Envision Eugene • Comprehensive Plan
Appendix C

RESIDENTIAL
LAND SUPPLY STUDY
Envision Eugene

Residential Land Supply Study (2012-2032)

July 2017

Table of Contents

Introduction and Acknowledgements

Part I. 2012 Residential Land Supply

Part II. Housing Needs Analysis

Part III. Other Uses on Residential Land (2012-2032)

Part IV. Measures to Increase Residential Development (2012-2032)

Part V. Residential Buildable Lands Inventory (2012-2032)
Introduction to Eugene’s Residential Land Supply Study

Eugene’s Residential Land Supply Study includes five Parts. Parts I-IV are the steps that lead to Part V, which establishes Eugene’s 20-year supply of land for residential use. In Part I, “2012 Residential Land Supply,” the City identifies the residential land supply that exists inside Eugene’s urban growth boundary (“UGB”) in 2012. Part II, “Housing Needs Analysis,” determines whether the land identified in Part I is enough to accommodate Eugene’s residential growth over a 20-year planning period based on application of recent trends. Part III, “Other Uses on Residential Land (2012-2032),” determines the amount of additional residential land that will be needed during the 20-year period due to other uses, such as public and semi-public uses, that are likely be located on residential land inside the UGB. It then determines whether the 2012 residential land supply can accommodate the projected demands on residential land for the next 20 years if Eugene continues to develop according to recent trends and existing codes and programs.

In Part IV, “Measures to Increase Residential Development,” the City explains the efficiency measures it has taken to increase its supply of residential land inside its UGB. Part V, “Residential Buildable Land Inventory (2032),” provides the city’s 2012-2032 Buildable Land Inventory intended to serve Eugene’s need for residential land through 2032, including the final land supply maps and density/capacity assumptions for the different categories of land on the supply maps.

Acknowledgements and Appreciation

The City of Eugene wishes to thank the many members of the community, staff and consultants that contributed to this work over the 2010-2016 period. This work is better because of your participation.

Community Members

1 For purposes of this Study, the “Eugene UGB” is the portion of the former Eugene –Springfield regional UGB that lies west of Interstate 5. Springfield took action in 2011 to lawfully withdraw the land east of Interstate 5 from the, previously, regional UGB, as directed by ORS 197.304.
Agency Members

City Staff: Carolyn Burke, Jason Dedrick, Zach Galloway, Lisa Gardner, Alissa Hansen, Terri Harding, Robin Hostick, Emily Jerome, Heather O’Donnell, Doug Terra

Consultants

EcoNorthwest: Bob Parker and Beth Goodman

Lane Council of Governments: Nick Siegel and David Richey
Part I. 2012 Residential Land Supply

Part I includes the following sections, figures and tables:
1. Introduction
2. Purpose
3. Data & Methods
4. The Process
5. Conclusion

Table 1 Committed & Protected Residential Land, 2012
Table 2. Vacant Residential Land, 2012
Table 3. Vacant Acres or Lots of Residential Land by Category of Land, 2012
Table 4. Developed Residential Land, Eugene 2012
Table 5. Partially Vacant Acres or Lots of Residential Land Category of Land, 2012

Figure 1 Plan Designations (2012)
Figure 2 Plan Designations for Employment Land (2012)
Figure 3 Committed and Protected Land (2012)
Figure 4 Residential Land Supply (2012)
Figure 5 Residential Land Supply (2012) (tiles 1 through 10)
Figure 6 Developed Residential Land (2012)

1. Introduction

The first step in establishing a complete and final 20 year residential Buildable Lands Inventory (2012-2032) is the identification of the residential land supply that exists inside Eugene’s urban growth boundary (“UGB”) in 2012, the outset of the 20-year planning period. For Eugene, the 2012 land supply is documented in this Part I of the Envision Eugene / Residential Land Supply Study. The 2012 residential land supply forms the basis for Parts II, III and IV of this Study that determine the capacity of the 2012 residential land supply to meet the City’s needs for additional residential development over the 2012-2032 planning period. The final Buildable Lands Inventory (“BLI”) for the 2012-2032 planning period is located in Part V of this Study.

2. Purpose

One of the primary goals of the Envision Eugene project is to determine how Eugene will accommodate the community’s growth through 2032, as required by state law. Eugene is expected to grow and will need to accommodate more people and jobs. Determining how to accommodate this future demand requires Eugene to first identify its 2012 supply of the land available for homes.¹

¹ Eugene’s process for establishing the 2012 residential land supply included the simultaneous establishment of its 2012 employment land supply, taking into account all plan designations to create consistency in methodology and
The 2012 residential land supply analysis informs several questions:

- Most significantly, how much residential land is available in 2012 for development within the area of Eugene’s current UGB?
- Where is that developable residential land located?
- What is the distribution of the developable residential land by the comprehensive plan land use designation categories (e.g. low density residential, medium density residential, and high density residential)?

The methods used for, and results of, the 2012 residential land supply were reviewed by multiple stakeholder groups, including a citizen advisory committee during the 2008 Eugene Comprehensive Lands Assessment process and the Envision Eugene Technical Resource Group (TRG) during the subsequent Envision Eugene process. The TRG’s work was integral to the Envision Eugene analysis. The TRG included members with local and regional expertise on issues like economic and residential market conditions and development trends, land use conservation, and sustainability, as well as members from other local boards and commissions. The TRG met regularly over the course of five years, volunteering hundreds of hours, to examine the assumptions and methodologies related to all Envision Eugene analysis, including the 2012 land supply, demand projections, capacity analysis and measures to increase development and UGB expansion. Where the TRG’s work was particularly significant in the preparation of the 2012 residential land supply, its work is highlighted below. The following describes the data, analysis and results of the 2012 residential land supply.

3. Data & Methods

Most of the data files needed to determine the 2012 residential land inventory project are from local government systems, while other data was created or calculated or the result of location (geospatial) based processing. All data files were current as of 2012 where possible. These data layers and mapped features include:

<table>
<thead>
<tr>
<th>Land and administrative boundary data</th>
<th>Land constraints data</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Eugene-Springfield Metropolitan Plan (Metro Plan) boundary, for the portion west of Interstate 5</td>
<td>• Street and other rights-of-way</td>
</tr>
<tr>
<td>• Plan Designation areas (intended future use of property per the Metro Plan)</td>
<td>• Floodway</td>
</tr>
<tr>
<td>• Urban growth boundary (UGB)</td>
<td>• Protected natural resources (per Statewide Planning Goal 5 and federally threatened or endangered species)</td>
</tr>
<tr>
<td>• Land use, existing</td>
<td>• Wetland areas</td>
</tr>
</tbody>
</table>

terminology between the inventories of residential and employment land. See Envision Eugene / Employment Land Supply Study.

\(^2\) An initial 2008 land supply was prepared by the Lane Council of Governments. City staff and LCOG updated the 2008 work in 2012. Following the full run of the land model in 2012, in May 2013 any vacant land that had an address assigned to it was classified as “developed.” Address points are typically assigned to lots when a building permit is applied for and is, therefore, a reasonable proxy for development.
4. The Process

The foundation for identifying Eugene’s 2012 residential land supply is a location-based (geospatial\(^3\)) model that was used to create the land supply layer. The land supply process is divided into five (5) main steps or phases. The first three steps were completed within the model and steps 4 and 5 used the results of the model:

1) **Acquire and evaluate the data**; obtain and review the data layers as to their suitability for use in the analysis, including resolving any quality issues, and develop a methodology for applying that data.

2) **Create a land supply layer**; combine all the geographic features together to create a single integrated land supply layer.

3) **Classify land into types; do a sub-tax lot level analysis that** classifies the thousands of pieces of the land supply layer into one of four types of land (committed, protected, developed, vacant—specific definitions are presented in Step 3, below) by comprehensive plan designation.

4) **Identify additional capacity**; identify underdeveloped sites that the model initially classified as developed.

5) **Summarize the results**; summarize the 2012 land supply using tables, charts and maps and provide information to help answer the larger question – how do we meet the demand for land of different types over the next 20 years?

The illustration below provides a simplified view of the model analysis used to create the land supply, showing how numerous sources of data and assumptions were processed using a series of geographic models.

\(^3\) “Geospatial analysis is an approach to applying statistical analysis and other informational techniques to data which has a geographical or geospatial aspect. Such analysis would typically employ software capable of geospatial representation and processing, and apply analytical methods to terrestrial or geographic datasets, including the use of geographic information systems and geomatics.” (Wikipedia contributors. "Geospatial analysis." Wikipedia, The Free Encyclopedia, 7 Apr. 2015. Web. 19 May. 2015)
Step 1: Acquire and evaluate the data

The data layers described earlier were acquired from several sources, including local, state and federal agencies. The data layers used are the result of considering the type of data needed to develop a residential land inventory and locating the best available data. For example, Figures 1 and 2 at the end of this Part I show the 2012 comprehensive plan designations used for Eugene. A processing methodology was developed, as described further in steps 2 through 5, for how the selected data layers are integrated into the geospatial model, processed, and result in a land supply. Evaluation of the data and development of the analysis processes (the methodology) was completed by government staff, with support from consultants and the TRG that spent many hours vetting the data and analysis.

Step 2: Create a land supply layer

The overlay of all the data layers together in the geospatial model creates one integrated layer – the land supply – which divides the UGB into tens of thousands of individual pieces or polygons based on their different characteristics. Some people have described the final map layer as looking like “fabric” or “shattered glass” or a quilt. Each piece of land in the land supply fabric carries with it all of the characteristics from the different layers that were overlaid together; land uses and boundaries (e.g. tax
lots, plan designation, acreage) and land constraints (e.g. rights-of-way, wetlands). The result is 34,503 acres of a sub-taxlot level analysis of the characteristics for all land within the 2012 Eugene UGB. Of this, 22,341 acres are residential land. This sub-taxlot analysis is then used to identify what pieces of land are suitable for development (Step 3).

Step 3: Classify land into types

Each of the thousands of individual pieces of land in the land supply inventory are then classified as one of four types of land based on the data characteristics (e.g. comprehensive plan designation, wetlands) of that piece of land. The four types of land are protected, committed, vacant and developed.

Then, the acres of the four land types are categorized by comprehensive plan designation to provide a total number of acres by land type and by plan designation for all of Eugene’s 34,503 acre UGB. Out of the 34,503 acres in the UGB, 22,341 are designated for residential. The data layers that make up the four types of land and the total acreage of the land types by plan designation are as follows:

- **Protected** land is reserved to protect natural resources or because of natural hazards and therefore has no development or redevelopment potential. For purposes of this Study, lands defined as “protected” include the following:
 - Federal Emergency Management Agency (FEMA) Floodway (Flood Insurance Rate Map - FIRM, 1999 publication year)
 - Eugene’s Adopted Goal 5 Riparian Corridors and Surrounding Protection Areas
 - Eugene’s Adopted Goal 5 Wetlands and Surrounding Protection Areas
 - Eugene’s Adopted Goal 5 Upland Wildlife Habitat and Surrounding Protection Areas
 - Eugene’s Adopted Goal 6 Water Quality Protection Areas
 - Historic and Cultural Resources (City Landmark, National Register, or Primary Ranked Cultural Resource)
 - Natural Resource (NR) Zoned Areas
 - Wildlife Habitat (federally listed threatened and endangered species)
 - Slopes of 30% or greater

- **Committed** land is devoted to special uses like parks, schools, government offices, cemeteries, and rights-of-way and therefore has no development or redevelopment potential. Based on tax

4 This means that in the geospatial model, a lot or subarea is not identical with a tax lot. Instead, it is a subarea of a tax lot that shares certain characteristics. For instance, if a lot has more than one plan designation, barring any other differing characteristics the tax lot would be split into subareas by at minimum the number of plan designations on the site.

5 The geoprocessing model uses the title of “undeveloped” rather than “vacant.” Vacant is used here for consistency with State law terminology.

6 As found during the Eugene Comprehensive Lands Assessment analysis, historically no residential development has occurred above 30%. Since some residential development occurs above 25%, slopes 30% or greater were assumed to be too constrained for development rather than using 25% as allowed by OAR 660-008-0005(2).
assessor data and the Lane County land use code system, lands defined as committed include the following:

- **Government Property** (e.g. city, county, state, federal)
- **City, County and State Parks**
- **School District Property** (e.g. 4J and Bethel)
- **Transportation Rights-of-Way** (e.g. streets, rail)
- **Cemeteries**
- **Bonneville Power Administration (BPA) easements**

- **Vacant** land is land suitable for development that is identified with a “vacant” land use code in the regional land use code system or has insignificant improvements of less than $1,000 in 2012 assessed value.\(^7\)

- **Developed** land is identified with a “developed” type of land use code in the regional land use classification system or with significant improvements of at least $1,000 in 2012 assessed value. Developed land may also have redevelopment potential and, as discussed below, additional capacity if the land is larger.

The land model results\(^8\) by land type are as follows:

Protected & Committed Land

- Lands can be classified as committed or protected, or both (e.g. government owned land with protected wetlands) and as such these classes are not mutually exclusive and are reported on as one combined category.\(^9\)

- Additionally, analysis was done after the land model was run to address government surplus land. Some government owned land has been officially designated as surplus land, meaning it is anticipated for disposal and will not be committed to public use in the future. Since these sites\(^10\) are still in public ownership, the model initially classifies them as committed. To correct this, for confirmed surplus sites the public ownership characteristic in the model is overridden so that the land type is assigned as if it were in private ownership. This did not result in additional capacity for residential as many of these sites are fully developed.

- The combined committed and protected acres is 13,880 acres for all of the plan designations in the UGB which equates to approximately 40% of Eugene’s 34,503 acres. The combined

\(^7\) The land model was run in August of 2012. To make the 2012 land supply as accurate as possible, on May 20, 2013 a final sweep was conducted to remove any vacant sites that had been assigned an address point in the regional GIS system as of that date. An address point is typically applied to a property in the regional GIS system when a building permit is submitted.

\(^8\) For the purposes of this Study, acreage totals from the model are usually rounded to the closest whole number unless otherwise necessary to provide one decimal.

\(^9\) When land is both committed and protected, the default is to identify that portion of land as committed.

\(^10\) See the Technical Support portion of the public record for sites.
committed and protected acres on residential land is 6,941 acres which equates to about 31% of all residentially designated land in the UGB as follows in Table 1 and shown on Figure 3:

Table 1. Committed & Protected Residential Land, Eugene 2012

<table>
<thead>
<tr>
<th>Plan Designation</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committed & Protected</td>
<td>6,941</td>
</tr>
<tr>
<td>High Density Residential</td>
<td>681</td>
</tr>
<tr>
<td>High Density Residential Mixed Use</td>
<td>56</td>
</tr>
<tr>
<td>Low Density Residential</td>
<td>6,007</td>
</tr>
<tr>
<td>Medium Density Residential</td>
<td>585</td>
</tr>
<tr>
<td>Medium Density Residential Mixed Use</td>
<td>20</td>
</tr>
</tbody>
</table>

Vacant Land

- The acres of all vacant residential land are as follows in Table 2 and as shown on Figures 4 and 5:

Table 2. Vacant Residential Land, Eugene 2012

<table>
<thead>
<tr>
<th>Plan Designation</th>
<th>Acres of Vacant land</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Density Res Mixed Use</td>
<td>1</td>
</tr>
<tr>
<td>High Density Residential</td>
<td>43</td>
</tr>
<tr>
<td>Low Density Residential</td>
<td>1351</td>
</tr>
<tr>
<td>Medium Density Residential</td>
<td>206</td>
</tr>
<tr>
<td>Medium Density Res Mixed Use</td>
<td>1</td>
</tr>
</tbody>
</table>

- As explained in the HNA (Part II of this Study), there are three methods used to estimate residential development capacity of vacant land. Two of the methods utilize the number of acres in the land supply and one utilizes the number of lots in the supply. Table 3 shows the vacant acres and lots for residential land, based on the size, slope and elevation factors that are used to, later, determine the residential capacity assumed for the land.

11 The acres by plan designation reflected in the 2012 land supply are the plan designations as of 2012 and do not reflect any changes to plan designations that occurred after the land model was run (e.g., as a result of a measure to increase residential development discussed in Part V of this Residential Land Supply Study).

12 Due to geospatial processing imprecision where the plan designation layer intersects with the UGB boundary, the land supply acres indicate that there are some acres of land in plan designations that are actually not within Eugene’s UGB (Agriculture, Forest Land, Rural Residential, Sand and Gravel). These geospatial processing “slivers” of plan designations are not actually within Eugene’s UGB and are therefore excluded from capacity reporting.

13 See Part II, the Housing Needs Analysis, section 4.1.1 for more information about these three housing capacity methods.
Table 3. Vacant Acres or Lots of Residential Land by Category of Land, 2012

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900’</td>
<td>> 900’</td>
<td>All Elevations</td>
</tr>
<tr>
<td>< 1 acre</td>
<td><5% 58 ac 174 ac < 1 acre</td>
<td>≥5% 119 ac 392 ac > 900’</td>
<td><5% 115 ac 5 lots <5% 6 ac 6 ac <5% 115 lots 6 ac <5% 0.4 ac</td>
</tr>
<tr>
<td>1-5 acre</td>
<td><5% 118 ac 768 lots > 900’</td>
<td>≥5% 187 ac 11 ac ≥5%</td>
<td><5% 0 ac 49 ac ≥5% 42 ac 4 ac ≥5% 10 ac 10 ac ≥5% 6 ac 0</td>
</tr>
<tr>
<td>5+ acre</td>
<td><5% 158 ac 187 ac All Elevations</td>
<td>≥5% 392 ac 4 ac All elevations</td>
<td><5% 8 ac 4 ac ≥5% 65 ac 123 ac ≥5% 47 ac 0</td>
</tr>
</tbody>
</table>

Developed Land

- The acres of all developed residential land are as follows in Table 4 and as shown on Figure 6:

Table 4. Developed Residential Land, Eugene 2012

<table>
<thead>
<tr>
<th>Plan Designation</th>
<th>Developed Land Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Density Res Mixed Us</td>
<td>19</td>
</tr>
<tr>
<td>High Density Residential</td>
<td>345</td>
</tr>
<tr>
<td>Low Density Residential</td>
<td>12,149</td>
</tr>
<tr>
<td>Medium Density Residential</td>
<td>1,249</td>
</tr>
<tr>
<td>Medium Density Res Mixed</td>
<td>38</td>
</tr>
</tbody>
</table>

Step 4: Identify additional capacity

Although the model initially identifies thousands of acres as developed, some of these acres have additional capacity to accommodate more housing. Using the results of the geospatial model for developed land, a separate analysis was completed of larger sites that the model initially classified as developed. These sites were further reviewed to determine whether they are fully developed (and remain classified as developed land). If a portion of the site is undeveloped with room for additional development capacity it was reclassified as partially vacant land. Analysis was also completed to identify whether redevelopment potential exists on developed land. The sites that make up this additional capacity of developed land are classified as follows.
Partially Vacant Land

- City staff and the TRG engaged in a parcel-by-parcel review of all larger sub-taxlot pieces that were initially categorized as developed to determine if any of these sites have additional room for development (i.e., partially vacant land) or if they are fully developed (e.g., buildings, parking areas, infrastructure, developed multi-family open space areas). Several resources were used to complete this analysis including aerial photos, tax assessor information, regional land use codes, and local knowledge. The analysis is much more detailed than the safe harbor provisions for partially vacant lands and represents a methodology that the TRG felt was more thorough and reasoned than the safe harbor assumptions would have been. Table 5 shows the amount of partially vacant acres\(^{15}\) identified and sites are shown on Figures 4 and 5.\(^{16}\)
 - Low Density Residential partially vacant land. Table 5 shows the amount of partially vacant acres or the number of partially vacant lots identified on low density residential land, based on the size, slope and elevation factors that are used to determine the capacity of these lands in the Housing Needs Analysis ("HNA") at Part II of this Study.\(^{17}\)
 - All lots that were in a non-residential use (church, neighborhood commercial, etc.) were excluded from analysis.
 - All lots under 1 acre in size were also excluded, while some of these lots are assumed to have additional capacity, this capacity will be addressed under the redevelopment estimates.
 - All remaining lots over 1 acre in size were examined individually and those that are developed with, or owned for, a non-residential use were excluded from the land supply / assigned no capacity.
 - Medium Density Residential partially vacant land. This review identified about 178.7 acres of partially vacant medium density residential land.

\(^{14}\) Cities must develop an inventory of vacant, partially vacant, and redevelopable lands that may be developed for future residential uses (ORS 197.296(3)). The statutes do not define “partially vacant” for residential land. Although the Envision Eugene land model originally identified these lots as “developed,” the residential land supply reclassified these lots as “partially vacant” lots if they were Low Density Residential lots at least an acre, Medium Density Residential lots at least half an acre and High Density Residential lots at least an acre, with some development but room for more. The term “partially vacant” is used throughout this Study for consistency between the terminologies of other Eugene land inventories being completed at the same time.

\(^{15}\) Partially vacant acres refers to the site acreage excluding acreage with existing development. See Part II, the Housing Needs Analysis, section 4.1.3, for more information about the deduction for existing development on partially vacant residential land.

\(^{16}\) There is overlap between land shown on Figures 4-6 because partially vacant sites shown on Figures 4 and 5 are initially identified as developed on Figure 6.

\(^{17}\) The capacity of land for residential development during the 2012-2032 planning period is determined in Part II of this Study, at Chapter 4. There, the City applies one of three methods to estimate residential development capacity of vacant and partially vacant land. Two of the methods utilize the number of acres in the land supply and one utilizes the number of lots in the supply. See the Housing Needs Analysis in Part II of this Study, section 4.1.1, for more information about these three methods.
o High Density Residential partially vacant land. This review identified about 25.8 acres of partially vacant high density residential land.
 - The analysis for medium and high density residential follows a similar methodology to that of Low Density Residential partially vacant lands.
 - All lots that were in a non-residential use or ownership (church, neighborhood commercial, schools, etc.) were excluded from analysis. Notable bases for this exclusion:
 - Radio tower property, which is non-residentially owned, and likely underground cable facilities or easements.
 - Masonic Lodge parking area, which is graveled and striped. Currently used several times a year.
 - Non-protected stormwater or open space areas that are associated with a multi-family development.
 - Baseball field owned by religious institution.
 - All remaining lots under .5 acre in size in Medium Density Residential and all lots under 1 acre in size in High Density Residential were excluded from the analysis; while some of these lots are assumed to have additional capacity, this capacity will be addressed under the “redevelopment” estimates.
 - All lots .5 or greater in size in Medium Density Residential and all lots 1 acre or greater in size in High Density Residential were examined individually (Lots .25 - .99 ac in High Density Residential were initially examined as well but no partially vacant lots were found. The two potential candidates were fraternity houses so the available open space was determined necessary for the existing development. Based on this review, partially vacant is considered to be on lots 1 acre or greater.) The HNA in Part II of this Study assumes that all lots have some partially vacant capacity, dependent on their location and their size, with the exception of those lots that were.\(^\text{18}\)
 - Completely residentially developed (open space serving the residents is considered part of the development regardless of if it is on the same tax lot or not) or due to building placement;
 - Developed with, or owned for, a non-residential use; or

\(^{18}\) Additional observations included the following: Most developed medium and high density residential properties are completely developed, including the open space that supports the density. There is not much truly partially vacant area available for more capacity. There are several instances where the high density residential land is developed with non-residential uses, particularly medical uses. Although there were a few occasions where the location of a house on the lot appeared to block a major vacant area in the back of the lot, these were exceptions. Mostly there appeared to be room to go around the house for further development. Because these were exceptions, these lots were included in the partially vacant land supply rather than factoring them into the redevelopment estimates. Generally, additional capacity was determined if there was enough frontage and/or room for additional development.
Table 5. Partially Vacant Acres or Lots of Residential Land by Category of Land, 2012

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900'</td>
<td>> 900'</td>
<td>All Elevations</td>
</tr>
<tr>
<td>< 1 acre*</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>235 ac</td>
<td>244 ac</td>
<td>2 ac</td>
</tr>
<tr>
<td>5+ acre</td>
<td>264 ac</td>
<td>138 ac</td>
<td>0 ac</td>
</tr>
</tbody>
</table>

* In parcels < 1 acre in LDR and HDR, this analysis applies to vacant land only. In parcels < 1 acre in MDR, this analysis applies to vacant land and partially vacant parcels 0.5 - < 1 acres

Redevelopment Potential of Residential Land

Redevelopment potential exists for some of the developed land shown on Figure 6. A redevelopment rate has been assumed for those developed lands that are likely to redevelop during the planning period. These lands provide additional development capacity. Redevelopment means to expand or replace buildings on land that is already developed but not to its full capacity, and in a manner that creates room for more homes than the site originally held. Redevelopment potential means property that due to present or expected market forces there exists the strong likelihood that this property will redevelop over the next 20 years compared to other developed land in the UGB. Baseline redevelopment is the natural amount of redevelopment expected to occur without additional actions taken by the City to encourage it, as opposed to redevelopment that is stimulated by City actions (e.g. because of enacting measures that increase residential development). The amount of baseline redevelopment potential of residential land is discussed in detail in Part II of this Residential Land Supply Study, the HNA, section 4.2.

Step 5: Summarize the results

The results of the 2012 residential land supply project are tables, charts and maps that depict the land supply by location, size, slope, elevation and plan designation. Tables 3 and 5 summarize the 2012 land supply on vacant and partially vacant land. In addition, some redevelopment potential exists on developed land as provided in Part II (HNA), section 4.2 (add to ELS).

19 Per OAR 660-008-0005(7), “redevelopable land” means land zoned for residential use on which development has already occurred but on which, due to present or expected market forces, there exists the strong likelihood that existing development will be converted to more intensive residential uses during the planning period.” The Envision Eugene residential redevelopment land category is consistent with this definition; these are lands that have been identified with the strong likelihood to redevelop during the planning period due to present or expected market forces.
The information presented in this preliminary Part (Part I) of the Residential Land Supply Study cannot be used to determine whether a site is on the 2012-2032 BLI, nor can it be used to determine the number of “needed housing” units that a development site is assumed to accommodate during the 20-year planning period. The supply of land identified in this, Part I - 2012 Residential Land Supply serves as baseline data, only. Analysis and actions described in Parts II, III and IV of this Study inform the final Residential Buildable Lands Inventory (“BLI”) that is provided in Part V of this Study. For example, efficiency measures described in Part IV make some changes to the land use designations of residential land shown on the Part 2012 land supply; the HNA, in Part II of this Study, sets out the methods for determining a site’s assumed capacity to accommodate needed residential development. All such factors are incorporated into the final BLI in Part V of this study. Therefore, the determinations of whether a site is on the 2012-2032 BLI and, if so, the number of “needed housing” units that a development site is assumed to accommodate during the 20-year planning period shall be based solely on the final BLI in Part V of this Study.

5. Conclusion

The key findings from the 2012 residential land supply are that in 2012:

- Eugene has the following Low Density Residential supply:
 - A total of about 2,097 vacant acres and about 534 partially vacant acres
- Eugene has the following Medium Density Residential supply:
 - A total of about 194 vacant acres and 208.7 partially vacant acres
- Eugene has the following High Density Residential supply:
 - A total of about 44.4 vacant acres and 25.8 partially vacant acres
- Eugene has some additional land supply in the form of new housing that will be added through redevelopment of developed residential and commercial land.

The capacity of this land supply to meet the City’s needs for housing in the 2012-2032 planning period is addressed in Part II, Chapter 4 of this Study.²⁰

²⁰As explained in detail in Chapter 4 of the HNA at Part II of this Study, for Low Density Residential land, the HNA applies: capacity method #1 to 450 vacant acres; capacity method #2 to 759 vacant acres and 499 partially vacant acres; and capacity method # 3 to 888 vacant lots and 35 partially vacant lots. For all MDR and HDR land, the HNA applies capacity method #1. The method used to estimate redevelopment capacity of developed residential and commercial land is also explained in Chapter 4 of the HNA at Part II of this Study.
Figure 1. Plan Designations (2012)

Plan Designation

- Low Density Residential
- Medium Density Residential
- Medium Density Res. Mixed
- High Density Residential
- High Density Res. Mixed Use
- Commercial
- Major Retail Center
- Commercial Mixed Use
- Light Medium Industrial
- Campus Industrial
- University Research
- Government & Education
- Parks/Open Space Mixed Use
- Natural Resource
- Parks and Open Space
- Mixed Use

Legend:
- Urban Growth Boundary
- Water Bodies
- Roads

Miles

0 1 2
Figure 2. Plan Designations for Residential Land (2012)

Plan Designation
- Low Density Residential
- Medium Density Residential
- Medium Density Res. Mixed
- High Density Residential
- High Density Res. Mixed Use
- Agriculture
- Forest Land
- Rural Residential

Legend:
- Urban Growth Boundary
- Water Bodies
- Roads
Figure 4. Residential Land Supply (2012)

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Caution: This map is not suitable for legal, engineering, or surveying purposes. This map in no way attempts to predict, determine, or require what happens on individual lots.
Figure 5. Residential Land Supply (2012)

Map tile 1 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Figure 5. Residential Land Supply (2012)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2, Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)
Figure 5. Residential Land Supply (2012)

Map tile 3 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Figure 5. Residential Land Supply (2012)

Map tile 4 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)
Figure 5. Residential Land Supply (2012)

Map tile 5 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Figure 5. Residential Land Supply (2012)

Map tile 6 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2, Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Figure 5. Residential Land Supply (2012)

Plan Designations
Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Figure 5. Residential Land Supply (2012)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)
Figure 5. Residential Land Supply (2012)

Map tile 9 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2, Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Figure 5. Residential Land Supply (2012)

Map tile 11 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The location of the UGB line on these maps is imprecise; for the precise location see Figure 2, Residential Land Supply (2012-2032).

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

- Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)
- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Figure 5. Residential Land Supply (2012)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Figure 5. Residential Land Supply (2012)

Map tile 16 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)
Figure 5. Residential Land Supply (2012)

Map tile 17 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)
Figure 5. Residential Land Supply (2012)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Figure 5. Residential Land Supply (2012)

Map tile 20 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Figure 5. Residential Land Supply (2012)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2, Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)
Figure 5. Residential Land Supply (2012)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)
Figure 5. Residential Land Supply (2012)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Figure 5. Residential Land Supply (2012)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Water Bodies

Major Streets

Urban Growth Boundary (2012)

2012 BLI Taxlots

Final

Developed Residential Lands

Committed or Protected Lands (in UGB)
Figure 5. Residential Land Supply (2012)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2, Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)
Figure 5. Residential Land Supply (2012)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 5, Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)
- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Figure 5. Residential Land Supply (2012)
Map tile 28 of 42
Figure 5. Residential Land Supply (2012)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Figure 5. Residential Land Supply (2012)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Figure 5. Residential Land Supply (2012)

Map tile 31 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Figure 5. Residential Land Supply (2012)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Figure 5. Residential Land Supply (2012)

Map tile 33 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The location of the UGB line on these maps is imprecise; for the precise location see Figure 2, Residential Land Supply (2012-2032).

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Plan Designations

Vacant Residential Lands

- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands

- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)
Figure 5. Residential Land Supply (2012)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2, Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Map tile 36 of 42
Figure 5. Residential Land Supply (2012)

Map tile 37 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2, Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)

Urban Growth Boundary (2012)
Water Bodies
Rail Road
2012 BLI Taxlots
Major Streets

[Map of Residential Land Supply (2012)]
- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Figure 5. Residential Land Supply (2012)

Map tile 39 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2, Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The location of the UGB line on these maps is imprecise; for the precise location see Figure 2.

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

Plan Designations
Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)
Figure 5. Residential Land Supply (2012)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The location of the UGB line on these maps is imprecise; for the precise location see Figure 2, Residential Land Supply (2012-2032).
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The location of the UGB line on these maps is imprecise; for the precise location see Figure 2. Residential Land Supply (2012-2032).

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
This document presents a housing needs analysis (HNA) for the City of Eugene. It is part of the Envision Eugene / Residential Land Supply Study, a larger project to determine whether Eugene has enough land to accommodate the City’s need for housing through 2032.

This HNA includes the following chapters and sections:

1 **Introduction** ... 7
 1.1 **Framework for a Housing Needs Analysis** ... 8

2 **Historical and Recent Development Trends** ... 18
 2.1 **Residential development trends** .. 20
 2.2 **Trends in housing mix** .. 24
 2.3 **Trends in Tenure** ... 26
 2.4 **Density** .. 27

3 **Housing Demand and Need** ... 30
 3.1 **Step 1: Project number of new housing units needed in the next 20 years** 31
 3.2 **Step 2: Identify relevant national, state, and local demographic and economic trends and factors that may affect the 20-year projection of housing type mix** .. 37
 3.3 **Step 3: Describe the demographic characteristics of the population and, if possible, housing trends that relate to demand for different types of housing** ... 53
 3.4 **Step 4: Determine the types of housing that are likely to be affordable to the projected population based on household income** 76
 3.5 **Implications of changes in demographic trends for future housing need** 92
 3.6 **Steps 5 and 6: Estimate the number of additional needed units by structure type and determine needed density** .. 103

4 **Residential land sufficiency** ... 117
 4.1 **Residential development capacity on vacant and partially vacant land** 117
 4.2 **Residential development capacity of land on redevelopable lots** 144
 4.3 **Summary of residential development capacity** .. 147
 4.4 **Residential land sufficiency** ... 148

5 **Conclusions** ... 149
This document contains the following tables:

Table 1. Dwelling units approved through building permits issued for new residential construction by structure type, Eugene, January 1, 2001 and December 31, 2012 ...21
Table 2. Total permitted dwellings (all types) by year, selected Lane County cities, 2000-2012 ...22
Table 3. Total permitted single-family and multi-family dwellings by year, selected Lane County cities, 2000-2011 ..23
Table 4. Observed housing mix for residential development, Eugene, 2001 to 2012 ...24
Table 6. Housing units by type and tenure, Eugene, 201127
Table 7. Average development density by structure type, dwelling units per net acre, 2001-2012, Eugene UGB ...28
Table 8. Average development density by Comprehensive Plan Designation and structure type, dwelling units per net acre, 2001-2012, Eugene UGB...29
Table 10. Forecast of demand for new housing units, Eugene, 2012-2032.........36
Table 11. Population in the U.S., Oregon, the Willamette Valley, Lane County, and Eugene, 1990-2012 ...56
Table 12. Population by age, Eugene, 2000 and 2011 ..58
Table 13. Average household size, Oregon, Lane County, and Eugene, 2000, 2010, and 2011 ...60
Table 14. Persons of Latino origin, Oregon, Lane County, and Eugene, 1990, 2000, and 2011 ...66
Table 15. White, Non-White, and Hispanic or Latino population, Oregon, Lane County, and Eugene, 1990 and 2011 ..67
Table 16. Places where residents of Eugene were employed, 2010....................68
Table 17. Places where workers in Eugene lived, 201069
Table 18. Inventory of Mobile/Manufactured Home Parks, Eugene, 201272
Table 19. Inflation-adjusted income indicators (in 2011 dollars), Eugene and Lane County, 1989, 1999, and 2010 ..77
Table 20. Illustration of affordable housing wage and rent gap by HUD income categories for a two-bedroom rental unit, Lane County, 201279
Table 21. Rough estimate of housing affordability, Eugene, 201281
Table 22. Average and median sales price, single-family dwellings, areas in Eugene, 2001, 2007, and 2011 ...84
Table 23. Comparison of income, housing value, and gross rent, Eugene, 1989, 1999, and 2010 ...89
Table 24. Comparison of income, housing value, and gross rent, Lane County, 1989, 1999, and 2010 ...91
Table 25. Baby boomers (Age in 2012: 46 to 65 years old; Age in 2035: 66 to 85 years old) ...96
Table 26. Echo Boomers (Age in 2012: 15 to 28 years old; Age in 2035: 35 to 48 years old)...98
Table 27. Growth of immigrants and change in ethnic composition..................100
Table 28. Estimate of needed dwelling units by structure type, Eugene, 2012-2032..111
Table 29. Baseline estimate of needed dwelling units by type and tenure, Eugene, 2012-2032...112
Table 30. Estimate of needed dwelling units by income level, Eugene, 2012-2032 ...113
Table 31. Allocation of new housing units by plan designation, Eugene, 2012-2032...115
Table 32. Capacity method by category of land, with land included in Capacity Method 1 shown in green highlight..120
Table 33. Capacity method by category of land, with land included in Capacity Method 2 shown in green highlight..122
Table 34. Capacity method by category of land, with land included in Capacity Method 2 shown in green highlight..124
Table 35. Vacant residential acres within Eugene’s UGB that are subject to Capacity Method 1, Eugene Buildable Lands Inventory, 2012............125
Table 36. Density assumptions, average dwelling units per vacant residential acre (net) for Capacity Method 1...126
Table 37. Net-to-gross conversion assumptions, dwelling units per acre, by plan designation Capacity Method 1, Eugene UGB.........................127
Table 38. Density assumptions, average dwelling units per vacant residential acre (gross) for Capacity Method 1...127
Table 39. Dwelling Unit Capacity of LDR, Land Subject to Capacity Method 1...128
Table 40. Dwelling Unit Capacity of MDR Land Subject to Capacity Method 1...128
Table 41. Dwelling Unit Capacity of HDR Land Subject to Capacity Method 1....129
Table 42. Vacant residential acres within Eugene’s UGB that are subject to Capacity Method 2, Eugene Buildable Lands Inventory, 2012............130
Table 43. Density assumptions, average dwelling units per vacant residential acre (gross) for Capacity Method 2...130
Table 44. Dwelling Unit Capacity of HDR Land Subject to Capacity Method 2....131
Table 45. Vacant residential lots within Eugene’s UGB that are subject to Capacity Method 3, Eugene Buildable Lands Inventory, 2012132
Table 46. Dwelling unit per lot assumption for Capacity Method 3....................133
Table 47. Dwelling Unit Capacity of LDR Land Subject to Capacity Method 3....133
Table 48. Estimated housing potential on vacant residential lands by plan designation ...133
Table 49. Partially vacant residential acres within Eugene’s UGB that are subject to Capacity Method 1, Eugene Buildable Lands Inventory, 2012........136
Table 50. Density assumptions, average dwelling units per partially vacant residential acre (net) for Capacity Method 1...136
Table 51. Net-to-gross conversion assumptions, dwelling units per acre, by plan designation Capacity Method 1, Eugene UGB.................................137
Table 52. Dwelling Unit Capacity of LDR, Land Subject to Capacity Method 1 137
Table 53. Dwelling Unit Capacity of MDR Land Subject to Capacity Method 1 ... 138
Table 54. Dwelling Unit Capacity of HDR Land Subject to Capacity Method 1 139
Table 55. Partially vacant residential acres within Eugene’s UGB that are subject
to Capacity Method 2, Eugene Buildable Lands Inventory, 2012............ 140
Table 56. Average dwelling units per vacant residential acre as of 2012 140
Table 57. Dwelling Unit Capacity of HDR Land Subject to Capacity Method 2 141
Table 57. Partially vacant residential lots within Eugene’s UGB that are subject to
Capacity Method 3, Eugene Buildable Lands Inventory, 2012.............. 142
Table 59. Dwelling unit per lot assumption for Capacity Method 3......................... 143
Table 60. Dwelling Unit Capacity of LDR Land Subject to Capacity Method 3 143
Table 61. Estimated housing potential on partially vacant residential lands by
plan designation, number of dwelling units, Eugene UGB 143
Table 62. New lots created on LDR lots less than one acre in size, 2012-2032 .. 144
Table 63. New secondary dwelling units created, 2012-2032.............................. 145
Table 64. New Dwellings Created on MDR and HDR Small Lots, 2012-2032 145
Table 65. Estimated housing capacity through baseline redevelopment on
residential land, Eugene, 2012 to 2032 .. 146
Table 66. Residential land capacity summary, Eugene, 2012............................. 147
Table 67. Comparison of capacity of existing residential land with need for new
dwelling units, Eugene UGB, 2012-2032... 148
Table 68. Summary of all land deficit or surplus, Housing Needs Analysis
Conclusion... 149
This document contains the following figures:

1. Process for assessing the sufficiency of residential land
2. Dwelling units approved through building permits issued for new residential construction, Eugene, January 1, 2001 and December 31, 2012
3. Housing units by type and tenure, Eugene, 2011
5. Housing market cycles, housing starts (in millions), 1970’s to 2000’s
6. Change in Homeownership Rate (percentage points) by age group, 1982-2011
7. Number of loans (millions) in foreclosure proceedings
8. Inflation-adjusted change in rents, percentage change, fourth quarter 2010 to fourth quarter 2011 in 64 metro areas
9. Monthly housing costs for mortgage payment and gross rent costs, 2011 dollars
11. Contributions to slower household growth, 2007-2011, native-born and foreign-born populations
12. Number of persons by generation by age cohort in 2010, (millions of persons)
13. Change in share of households located in core cities, major metropolitan areas, 2000 to 2010
14. Oregon homeownership distribution by age of householder and Latino origin, 2010
15. Population distribution by age, Oregon, Lane County, and Eugene, 2011
16. Change in population distribution by age, Lane County, 2000-2040
17. Household size, Oregon, Lane County, and Eugene, 1990 and 2010
18. Household composition, Oregon, Lane County, and Eugene, 2010
19. Households by household size and age of householder, Oregon and Eugene, 2011
20. Households by tenure and age of householder, Oregon and Eugene, 2011
21. Households by household size, tenure, and age of householder, Oregon and Eugene, 2011
22. Places where residents in Eugene were employed, 2010
23. Places where workers in Eugene lived, 2006
25. Median housing value, owner-occupied housing units, Lane County and Eugene, 1990 to 2011
26. Housing value, owner-occupied housing units, Oregon, Lane County, and Eugene, 2011
Figure 27. Median sales price, single-family dwellings, areas in Eugene, 2001, 2007, and 2011 ...85
Figure 28. Median contract rent, Lane County and Eugene, 2000 to 201186
Figure 29. Gross rent, renter-occupied housing units, Oregon, Lane County, and Eugene, 2011 ..87
Figure 30. Median contract rent, Lane County cities, 2007-201188
Figure 31. Average rental monthly costs by number of bedrooms, nominal dollars, Eugene, 2000 to 2012 ..89
Figure 32. Summary of housing mix, Eugene’s housing stock and housing developed between 2001 to 2012 ..104
1 INTRODUCTION

In 2008, the City of Eugene initiated the “Eugene Comprehensive Land Assessment” (ECLA) in response to House Bill 3337, which required that the City of Eugene establish an urban growth boundary (UGB) and demonstrate that there is enough land within the UGB to accommodate estimated housing needs for 20 years. The purpose of ECLA was to develop a factual basis for policy conversations about land need in Eugene. The ECLA report was completed and accepted by the Eugene City Council in June 2010.

The City of Eugene started the next phase of the discussion about Eugene’s land needs in May 2010. This process, called Envision Eugene, had two primary goals: (1) to determine how Eugene will accommodate the next 20 years of growth as required by State law and (2) to create a future that is livable, sustainable, beautiful, and prosperous. In addition to input from the public and various boards and commissions, Envision Eugene also incorporated input into the technical analysis from two key groups:

- **The Envision Eugene Community Resource Group** was composed of a variety of thoughtful and knowledgeable community members who participated in a series of in-depth conversations.

- **The Envision Eugene Technical Resource Group** was a committee of community members with technical expertise, who spent hundreds of hours vetting data and analysis including review of the buildable lands inventory and the assumptions and methods referred to within the HNA.

In March 2012, City of Eugene staff presented a draft recommendation for managing growth over the next 20 years, titled “Envision Eugene, A Community Vision for 2032.” As a foundation for the recommendation, it includes a framework for the vision and desired outcomes of Eugene’s growth over the next 20 years, called the “Seven Pillars.” The recommendation includes strategies and actions to accommodate Eugene’s jobs, homes, parks and schools while balancing the seven pillars. The Council accepted the Envision Eugene work and directed staff to complete this housing needs analysis (HNA) based on the Envision Eugene recommendation and subsequent technical analysis, along with necessary updates to data.

This HNA presents Eugene’s residential land demand for the 2012 to 2032 period. It is consistent with requirements of Goal 10, ORS 197.296, and OAR 660-008. The methods used for this study generally follow the
The primary goals of the HNA are to:

1. Project the amount of land needed to accommodate the city’s future housing needs of all types.
2. Identify Eugene’s future needed housing density and mix based on technical analysis and input through Envision Eugene.
3. Evaluate the existing residential land supply within the Eugene UGB to determine if it is adequate to meet that need.
4. Fulfill state planning requirements for a twenty-year supply of residential land.
5. Meet the requirements of House Bill 3337.

1.1 Framework for a Housing Needs Analysis

Economists view housing as a bundle of services for which people are willing to pay. Those services include shelter certainly, but also proximity to other attractions (jobs, shopping, recreation), amenity (type and quality of fixtures and appliances, landscaping, views), prestige, and access to public services (quality of schools). Because it is impossible to maximize all these services and simultaneously minimize costs, households must, and do, make tradeoffs. What they can get for their money is influenced by both economic forces and government policy. Moreover, different households will value what they can get differently. They will have different preferences, which in turn are a function of many factors like income, age of household head, number of people and children in the household, number of workers and job locations, number of automobiles, and so on.

Thus, housing choices of individual households are influenced in complex ways by dozens of factors; and the housing market in Lane County and Eugene are the result of the individual decisions of thousands of households. These points suggest the difficulties of projecting what types of housing will be built between 2012 and 2032.

The complexity of a housing market is a reality, but it does not obviate the need for some type of forecast of future housing demand and need, and for an assessment of the implications of that forecast for land demand and consumption. Such forecasts are inherently uncertain. Their usefulness for public policy often derives more from the explanation of their underlying
assumptions about the dynamics of markets and policies than from the specific estimates of future demand and need. Thus, we start our housing analysis with a framework for thinking about housing and residential markets, and how public policy affects those markets.

1.1.1 Housing demand versus need

The language of Goal 10 and ORS 197.296 refers to housing need: it requires communities to provide needed housing types for households at all income levels. Goal 10's broad definition of need covers all households—from those with no home to those with second homes.

State policy does not make a clear distinction between need and demand. Following is our definition, which we believe to be consistent with definitions in state policy:

- **Housing need** can be defined broadly or narrowly. The broad definition is based on the mandate of Goal 10 that requires communities to plan for housing that meets the needs of households at all income levels. Goal 10, though it addresses housing, emphasizes the impacts on the households that need that housing. Since everyone needs shelter, Goal 10 requires that a jurisdiction address, at some level, how every household will be affected by the housing market over a 20-year period. Public agencies that provide housing assistance (primarily the Department of Housing and Urban Development – HUD, and the Oregon Housing and Community Services Department - HCS) define housing need more narrowly. For them, households in need do not include most of the households that can purchase or rent housing at an “affordable” price, consistent with the requirements of their household characteristics. Households that cannot find and afford such housing have need: they are either unhoused, in housing of substandard condition, overcrowded, or paying more than their income and federal standards say they can afford.

- **Housing market demand** is what households demonstrate they are willing to purchase in the market place. Growth in population means growth in the number of households and implies an increase in demand for housing units. That demand is met, to the extent it is, primarily by the construction of new housing units by the private sector based on its judgments about the types of housing that will be absorbed by the market. ORS 197.296 includes a market demand component: buildable land needs analyses must consider the density and mix of housing developed over the previous five years or since their most recent periodic review, whichever is greater. In concept, what got built in that five-year period was the
In short, a housing needs analysis should make a distinction between housing that people might need (a normative, social judgment) and what the market will produce (an observable outcome).

Goal 10 does not make a clear distinction between the existing stock of housing and new housing. Because a lot of Goal 10 (and Goal 9, the Economy) is aimed at Goal 14 (Urbanization) and a determination of whether more land should be added to urban growth boundaries, there is usually more emphasis on new housing, which will require buildable land. In essence, a Goal-10 evaluation looks at (1) new households that the population forecasts presume will be living in a jurisdiction 20 years in the future, (2) estimates a number of new (“needed”) housing units, by type, and (3) estimates the amount of land they will consume when they are constructed.

Most housing market analyses and housing elements of comprehensive plans in Oregon make forecasts of new demand (what housing units will get built in response to market forces). Work by housing authorities is more likely to address housing need for special classes, especially low-income. It is the role of cities under Goal 10 to adopt and implement land use policies that will encourage provision of housing units that meet the needs of all residents.

It is unlikely that housing markets in any metropolitan area in the U.S. provide housing to meet the needs of every household. Even many upper-income households probably believe they "need" (want) more housing than their wealth and income allows them to afford. A typical standard, used by housing agencies around the country, is excess cost burden: does a household spend more than 30% of its income on housing? But even that standard may not comport with a common-sense notion of housing need: if upper income households are spending 40% of their income on housing because they are highly leveraged, betting on increases in property value, and have substantial wealth that they can invest in mortgage payments, do they have a housing need?

Independent of a strict legal interpretation, it is clear that any housing agency is focused on more basic housing needs. At the extreme there is homelessness: some people do not have any shelter at all. Close behind is substandard housing (with health and safety problems), space problems (the structure is adequate but overcrowded), and economic and social problems (the structure is adequate in quality and size, but a household has to devote so much of its income to housing payments that other
aspects of its quality of life suffer). Location can also be a burden—households that live farther from work and shopping opportunities will have to spend more money on transportation. Moreover, while some new housing is government-assisted housing, public agencies do not have the financial resources to meet but a small fraction of that need. New housing does not, and is not likely to, fully address all these needs because housing developers, like any other business, strive for profits.

In fact, many of those needs are much more likely to be satisfied by existing housing: the older, used stock of structures that is usually less expensive per square foot than new housing. Thus, forecasting the type of new units that might be built in a region (by type, size, and price) is unlikely to bear any relationship to the type of housing to which most people with acute housing needs will turn to solve their housing problems. One key reason for this is that the cost of building new housing (land, services, materials, labor) is such that it is not “affordable” to low-income households at a price that recovers cost, much less one that generates normal profit. This “trickle-down” effect is well known among housing specialists. In most communities a quick comparison of new home prices with income distributions will underscore the fact that developers tend to focus on the move-up market and not on entry-level housing.

Viewed in the light of those definitions (e.g., housing demand and housing need), the requirements of Goal 10 need clarification. Goal 10 mandates that communities plan for housing that meets the needs of households at all income levels. Thus, Goal 10 implies that everyone has a housing need. As we have noted, however, it is hard to justify spending public resources on the needs of high-income households: they have the income to purchase (demand) adequate housing services in the housing market. The housing they can afford may not be everything they want, but most policymakers would agree that the difference does not classify as the same kind of need that burdens very-low-income households.

In the context of the statewide land use program, planning for housing is addressed through local comprehensive plans and development codes. Moreover, state policy places some restrictions on what local governments can do. In other words, cities are limited to regulating housing types and densities which correspond roughly to housing costs. It is important to note that increased density can decrease housing costs, but high density housing is not always low cost housing.

This study is not the place to resolve debates about definitions of housing need and the purposes of Goal 10. Our analysis of need addresses the Goal 10 requirements regarding financial need (ability to obtain housing) for
future households as well as those households whose circumstances suggest that they will have special problems in finding adequate and affordable housing services. That analysis occurs after, and largely independent of, the forecast of new housing that is likely to be built to supply effective demand.

In summary, Goal 10 intends that cities and counties identify housing need and develop a land use policy framework that meets identified needs. One of the key issues that is addressed in a housing needs analysis is how much land is needed for different housing types, and therefore must be designated for different housing types. Providing sufficient land in the proper designations is one of the most fundamental land use tools local governments have to meet housing need.
1.1.2 What is affordable housing?

The terms “affordable” and “low-income” housing are often used interchangeably. These terms, however, have different meanings:

- **Affordable housing** refers to a household’s ability to find housing within its financial means. A number of indicators exist that can be used to determine whether housing is affordable. One indicator is cost burden: households that spend more than 30% of their income on housing and certain utilities are considered to experience cost burden. Any household that pays more than 30% experiences cost burden and does not have affordable housing. Thus, affordable housing applies to all households in the community.

- **Low-income housing** refers to housing for “low-income” households. HUD considers a household low-income if it earns 80% or less of median family income. In short, low-income housing is targeted at households that earn 80% or less of median family income.

These definitions mean that any household can experience cost burden and that affordable housing applies to all households in an area. Low-income housing targets low-income households. In other words, a community can have a housing affordability problem that does not include only low-income households.

Many (maybe most) households that experience cost burden are composed of people who have jobs. A household earning 80% of median family income in Eugene earns about $47,000 annually—or about $22.50 per hour for a full-time employee. Based on HUD affordability standards, the maximum affordable purchase price for a household earning $47,000 annually is about $141,000.

In summary, any household can face housing affordability problems. Because they have more limited financial means, the incidence of cost burden is higher among low-income households. Statewide planning Goal 10 requires cities to adopt policies that encourage housing at price ranges commensurate with incomes. State land use policy does not distinguish

1 Cost burden is a concept used by HUD. Utilities included with housing cost include electricity, gas, and water, but do not include telephone expenses. All of the indicators ECO has reviewed, including cost burden, have limitations that can distort results. Cost burden does not consider the impact of household size or accumulated assets. As a result a single-person household with an annual income of $20,000 and accumulated assets of $500,000 would be in the same category as a family of seven with an annual income of $20,000 and no accumulated assets.
between households of different income levels and requires cities to adopt policies that encourage housing for all households.

1.1.3 What objectives do housing policies typically try to achieve?

The *Practice of State and Local Planning* classifies goals that most government housing programs address into four categories:

- **Community life.** From a community perspective, housing policy is intended to provide and maintain safe, sanitary, and satisfactory housing with efficiently and economically organized community facilities to service it. In other words, housing should be coordinated with other community and public services. Although local policies do not always articulate this, they are implicit in most local government operations. Comprehensive plans, zoning, subdivision ordinances, building codes, and capital improvement programs are techniques most cities use to manage housing and its development. Local public facilities such as schools, fire and police stations, parks, and roads are usually designed and coordinated to meet demands created by housing development.

- **Social and equity concerns.** The key objective of social goals is to reduce or eliminate housing inadequacies affecting the poor, those unable to find suitable housing, and those discriminated against. In other words, communities have an obligation to provide safe, satisfactory housing opportunities to all households, at costs they can afford, without regard to income, race, religion, national origin, family structure, or disability.

- **Design and environmental quality.** The location and design of housing affect the natural environment, residents’ quality of life, and the nature of community life. The objectives of policies that address design and environmental quality include neighborhood and housing designs that meet: household needs, maintain quality of life, provide efficient use of land and resources, reduce environmental impacts, and allow for the establishment of social and civic life and institutions. Most communities address these issues through local building codes, comprehensive land use plans, and development codes.

- **Stability of production.** Housing is a factor in every community’s economy. The cyclical nature of housing markets, however, creates
uncertainties for investment, labor, and builders. The International City Manager’s Association suggests that local government policies should address this issue—most do not. Moreover, external factors (e.g. interest rates, cost of building materials, etc.) that bear upon local housing markets tend to undermine the effectiveness of such policies.

Despite the various federal and state policies regulating housing, most housing in the U.S. is produced by private industry and is privately owned. While the land use powers of local government have been an important factor in the production of housing, the role of local government has largely focused on regulation for public health and safety and provision of infrastructure. More recently, awareness has grown regarding the impact policies and regulations have had on the other aspects of community life such as costs of transportation and other infrastructure, access of residents to services and employment, and social interactions.

1.1.4 Framework for determining whether residential land is sufficient (state requirements)

The passage of the Oregon Land Use Planning Act of 1974 (ORS Chapter 197), established the Land Conservation and Development Commission (LCDC), and the Department of Land Conservation and Development (DLCD). The Act required the Commission to develop and adopt a set of statewide planning goals. Goal 10 addresses housing in Oregon and provides guidelines for local governments to follow in developing their local comprehensive land use plans and implementing policies.

At a minimum, local housing policies must meet the requirements of Goal 10 (ORS 197.295 to 197.314, ORS 197.475 to 197.490, and OAR 600-008). Goal 10 requires incorporated cities to complete an inventory of buildable residential lands and to encourage the availability of adequate numbers of housing units in price and rent ranges commensurate with the financial capabilities of its households.

Goal 10 defines needed housing types as “housing types determined to meet the need shown for housing within an urban growth boundary at particular price ranges and rent levels.” ORS 197.303 defines needed housing types:

a) Housing that includes, but is not limited to, attached and detached single-family housing and multiple family housing for both owner and renter occupancy;
b) Government assisted housing;\(^3\)

c) Mobile home or manufactured dwelling parks as provided in ORS 197.475 to 197.490; and

d) Manufactured homes on individual lots planned and zoned for single-family residential use that are in addition to lots within designated manufactured dwelling subdivisions.

Figure 1 is a graphic representation of the procedural steps leading up to and including the HNA as defined in ORS 197.296.

Figure 1. Process for assessing the sufficiency of residential land

The steps in determining Eugene’s housing needs were:

\(^3\) Government assisted housing can be any housing type listed in ORS 197.303 (a), (c), or (d).
1. **Inventory Current Stock of Residential Land.** A city is required to demonstrate that its comprehensive plan provides sufficient buildable lands within the urban growth boundary to accommodate estimated housing needs for 20 years (ORS 197.296(2)). Cities must develop an inventory of vacant, partially vacant, and redevelopable lands that may be developed for future residential uses (ORS 197.296(3)). Eugene’s 2012 Buildable Lands Inventory (BLI) is set out in Part I of the Envision Eugene Residential Land Supply Study. The BLI was prepared by the Lane Council of Governments (LCOG) and City of Eugene staff. The methods used and results of the inventory were intensely reviewed by multiple stakeholder groups, through the Envision Eugene processes and coordinated with staff from the Department of Land Conservation and Development.

2. **Forecast Residential Growth.** Cities are required to base their residential land studies on a 20-year coordinated population forecast. Eugene relies on the coordinated population forecast for Eugene adopted by Lane County in June 2009, consistent with Oregon Laws 2013 c.574 §3. The forecast is located in the Eugene-Springfield Metropolitan Area Plan.

3. **Conduct a Housing Needs Analysis.** Cities with a population of 25,000 or more are required to conduct an analysis of housing need by housing type and density range to determine the number of needed dwelling units and amount of land needed for each needed housing type by the end of the 20-year planning period. This document, prepared by ECONorthwest, constitutes Eugene’s Housing Needs Analysis (HNA). It is based on the detailed, technical analysis performed by ECONorthwest in coordination with City staff and officials, the Envision Eugene Technical Resource Group, and interested community members.

4. **Determine Residential Land Sufficiency.** Cities must compare the need for residential land (Step 3) with the capacity of buildable residential land within the UGB (Step 1) to determine whether there is enough land in the UGB to meet expected housing needs.
2 Historical and Recent Development Trends

Analysis of historical development trends in Eugene provides insights into how the local housing market functions. The housing type mix and density are also key variables in forecasting future land need. Moreover, such an analysis is required by ORS 197.296. The specific steps are described in Task 2 of the DLCD Planning for Residential Lands Workbook:

1. Determine the time period for which the data must be gathered
2. Identify types of housing to address (all needed housing types)
3. Evaluate permit/subdivision data to calculate the actual mix, average actual gross density, and average actual net density of all housing types

ORS 197.296 requires the analysis of housing mix and density to include the past five years or since the most recent periodic review, whichever time period is greater. The City’s last periodic review ended in 2007, five years before the 2012 planning period began. Therefore, ORS 197.296(5)(a) would require the City and County to rely on the five-year data set: 2007 - 2012. The City, however, made significant changes to the residential densities allowed in its zoning code in August 2001. Therefore, the City relied on the exception set out in (5)(c) to use data collected from an 11-year time period: 2001 - 2012. This longer time period was used because it provides more accurate, complete and reliable data relating to trends affecting housing need than a five-year analysis, especially because 2007-2012 data would have been concentrated on years of nation-wide economic recession and because residential development prior to 2001 was not subject to the new standards in the zoning code. Since the City and County adopted a new land use code in 2001, that year provided an ideal starting point for collecting data. The period used in the analysis of housing density and mix is 2001 to 2012. Using the time period beginning

4 Specifically, ORS 197.296(5) (b) states: “A local government shall make the determination described in paragraph (a) of this subsection using a shorter time period than the time period described in paragraph (a) of this subsection if the local government finds that the shorter time period will provide more accurate and reliable data related to housing capacity and need. The shorter time period may not be less than three years.”

5 Specifically, ORS 197.296(5)(c) states: “A local government shall use data from a wider geographic area or use a time period for economic cycles and trends longer than the time period described in paragraph (a) of this subsection if the analysis of a wider geographic area or the use of a longer time period will provide more accurate, complete and reliable data relating to trends affecting housing need than an analysis performed pursuant to paragraph (a) of this subsection. The local government must clearly describe the geographic area, time frame and source of data used in a determination performed under this paragraph.”
in 2001, therefore, provides the most accurate and reliable data related to housing capacity and need.

The housing needs analysis presents information about residential development by housing types. There are multiple ways that housing types could be grouped. For example, housing types could be grouped by:

1. Structure type (e.g., single-family detached, apartments, etc.)
2. Tenure (e.g., distinguishing unit type by owner or renter units)
3. Housing affordability (e.g., units affordable at given income levels)
4. Some combination of these categories

For the purposes of this study, we grouped housing types based on: (1) whether the structure is stand-alone or attached to another structure and (2) the number of dwelling units in each structure. The housing types used in this analysis are:

- **Single-family detached**: single-family detached units, secondary dwelling units, and manufactured homes on lots and in mobile home parks.
- **Single-family attached**: row houses, townhouses, and condominiums.
- **Two to four units**: structures with two to four dwelling units, such as duplexes, tri-plexes, and quad-plexes.
- **Five or more units**: structures with five or more dwelling units per structure.

The reason for choosing these housing type categories for the analysis is that the City collects data about residential development based on these structure types.

Using these structure types to forecast need for new housing does not provide all the information about housing issues that the City may want to consider. In addition, information is not systematically collected on some housing issues, either by the City, the U.S. Census, or other sources that systematically collect and analyze data. Two examples of housing types that stakeholders would like more information on, where information is not readily available, are larger than average student households and affordable small single-family units. These housing types are included as part of the four housing types described above but are not separately identified.

One of the key sources for data about housing and household data is the U.S. Census. This report primarily uses data from two Census sources:
• The **Decennial Census**, which is completed every ten years and is a survey of all households in the U.S. The Decennial Census is considered the best available data for information such as demographics (e.g., number of people, age distribution, or ethnic or racial composition), household characteristics (e.g., household size and composition), and housing occupancy characteristics. As of the 2010 Decennial Census, it does not collect more detailed household information, such as income, housing costs, housing characteristics, and other important household information. Decennial Census data is available for 1990, 2000, and 2010.

• The **American Community Survey (ACS)**, which is completed every year and is a sample of households in the U.S. The 2011 ACS sampled about 3.3 million households in 2011 or about 2.5% of the households in the nation. The ACS collects detailed information about households, such as: demographics (e.g., number of people, age distribution, ethnic or racial composition, country of origin, language spoken at home, and educational attainment), household characteristics (e.g., household size and composition), housing characteristics (e.g., type of housing unit, year unit built, or number of bedrooms), housing costs (e.g., rent, mortgage, utility, and insurance), housing value, income, and other characteristics.

In general, this report uses data from the 2011 ACS for Eugene. Where information is available and relevant, we report information from the 2010 Decennial Census.

2.1 Residential development trends

Figure 2 shows residential building permits issued in Eugene between January 1, 2001 and December 31, 2012. During this period, Eugene issued building permits that allowed for construction of 8,997 new dwelling units. Figure 2 shows that the number of dwelling units approved varies from year to year and peaked at about 1,420 in 2005 and decreased to fewer than 370 units permitted in 2008 and 2009.
Table 1 shows dwelling units approved through building permits issued for new residential construction by type within Eugene for 2001 to 2012. Table 1 shows that the City issued permits for 8,897 units, averaging 750 permitted units per year. The data indicate that about 59% of residential dwellings approved were for single-family detached dwellings, while about 39% were for structures with two or more units, and single-family attached units accounted for 2% of units permitted.

The majority of housing development in the region occurs in Eugene and Springfield. Table 2 shows the total number of permitted dwellings (single-family and multi-family) by year for selected Lane County cities between 2000 and 2012. Table 2 shows that Eugene had more than 67% of permitted units in the region between 2000 and 2012, with Springfield accounting for about one-fifth of permits. The number of permits issued peaked in 2005, with more than 1,900 permits issued. The fewest number of permits were issued in 2009, with about 500 permits issued.
Table 2. Total permitted dwellings (all types) by year, selected Lane County cities, 2000-2012

<table>
<thead>
<tr>
<th>City</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>Permits</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eugene</td>
<td>744</td>
<td>819</td>
<td>881</td>
<td>681</td>
<td>976</td>
<td>1,420</td>
<td>966</td>
<td>631</td>
<td>362</td>
<td>361</td>
<td>387</td>
<td>617</td>
<td>894</td>
<td>9,741</td>
<td>67%</td>
</tr>
<tr>
<td>Springfield</td>
<td>274</td>
<td>272</td>
<td>290</td>
<td>324</td>
<td>164</td>
<td>231</td>
<td>211</td>
<td>265</td>
<td>167</td>
<td>90</td>
<td>124</td>
<td>67</td>
<td>101</td>
<td>2,580</td>
<td>18%</td>
</tr>
<tr>
<td>Junction City</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>10</td>
<td>13</td>
<td>8</td>
<td>78</td>
<td>47</td>
<td>37</td>
<td>56</td>
<td>13</td>
<td>40</td>
<td>354</td>
<td>2%</td>
</tr>
<tr>
<td>Oakridge</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>13</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>53</td>
<td>0%</td>
</tr>
<tr>
<td>Creswell</td>
<td>26</td>
<td>67</td>
<td>82</td>
<td>93</td>
<td>153</td>
<td>62</td>
<td>56</td>
<td>84</td>
<td>27</td>
<td>11</td>
<td>7</td>
<td>8</td>
<td>14</td>
<td>690</td>
<td>5%</td>
</tr>
<tr>
<td>Cottage Grove</td>
<td>29</td>
<td>17</td>
<td>28</td>
<td>68</td>
<td>44</td>
<td>86</td>
<td>53</td>
<td>32</td>
<td>17</td>
<td>23</td>
<td>20</td>
<td>15</td>
<td>5</td>
<td>437</td>
<td>3%</td>
</tr>
<tr>
<td>Veneta</td>
<td>11</td>
<td>24</td>
<td>43</td>
<td>96</td>
<td>112</td>
<td>117</td>
<td>128</td>
<td>62</td>
<td>19</td>
<td>21</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>668</td>
<td>5%</td>
</tr>
<tr>
<td>Total</td>
<td>1,100</td>
<td>1,215</td>
<td>1,343</td>
<td>1,275</td>
<td>1,467</td>
<td>1,933</td>
<td>1,427</td>
<td>1,165</td>
<td>644</td>
<td>546</td>
<td>608</td>
<td>734</td>
<td>1,066</td>
<td>14,523</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: U.S. Census, Building permits data site, http://censtats.census.gov/bldg/bldprmt.shtml for all cities except Eugene, and City of Eugene Planning Department

Note: All dwellings within the city limits.

Table 3 shows the permits issued for both new single-family and new multi-family dwellings in selected Lane County cities between 2000 and 2012. Eugene consistently issues permits for the most multi-family units among the cities shown, whereas Coburg and Veneta did not issue permits for multi-family units over the period. Eugene issued over 80% of multi-family permits issued each year. Between 2004 and 2007, Eugene issued permits for more than 200 multi-family units per year. The number of multi-family units permitted declined to roughly fewer than 200 units per year between 2008 and 2010. In 2011 and 2012, the number of multi-family permits issued in Eugene increased to about 480 and 740 permits for each year.
Table 3. Total permitted single-family and multi-family dwellings by year, selected Lane County cities, 2000-2011

<table>
<thead>
<tr>
<th>City</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>Total</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eugene</td>
<td></td>
</tr>
<tr>
<td>Single family</td>
<td>619</td>
<td>718</td>
<td>741</td>
<td>634</td>
<td>679</td>
<td>593</td>
<td>379</td>
<td>222</td>
<td>148</td>
<td>199</td>
<td>137</td>
<td>152</td>
<td></td>
<td>6,115</td>
<td>42%</td>
</tr>
<tr>
<td>Multifamily</td>
<td>125</td>
<td>101</td>
<td>146</td>
<td>47</td>
<td>297</td>
<td>526</td>
<td>369</td>
<td>252</td>
<td>140</td>
<td>213</td>
<td>188</td>
<td>480</td>
<td>742</td>
<td>3,626</td>
<td>25%</td>
</tr>
<tr>
<td>Springfield</td>
<td></td>
</tr>
<tr>
<td>Single family</td>
<td>222</td>
<td>225</td>
<td>243</td>
<td>232</td>
<td>128</td>
<td>98</td>
<td>134</td>
<td>170</td>
<td>102</td>
<td>90</td>
<td>108</td>
<td>65</td>
<td>99</td>
<td>1,916</td>
<td>13%</td>
</tr>
<tr>
<td>Multifamily</td>
<td>52</td>
<td>47</td>
<td>47</td>
<td>92</td>
<td>36</td>
<td>133</td>
<td>77</td>
<td>95</td>
<td>65</td>
<td>0</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>664</td>
<td>5%</td>
</tr>
<tr>
<td>Coburg</td>
<td></td>
</tr>
<tr>
<td>Single family</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>0%</td>
</tr>
<tr>
<td>Multifamily</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Creswell</td>
<td></td>
</tr>
<tr>
<td>Single family</td>
<td>26</td>
<td>67</td>
<td>80</td>
<td>91</td>
<td>133</td>
<td>60</td>
<td>56</td>
<td>84</td>
<td>27</td>
<td>11</td>
<td>7</td>
<td>8</td>
<td>14</td>
<td>664</td>
<td>5%</td>
</tr>
<tr>
<td>Multifamily</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>44</td>
<td>0%</td>
</tr>
<tr>
<td>Cottage Grove</td>
<td></td>
</tr>
<tr>
<td>Single family</td>
<td>29</td>
<td>17</td>
<td>15</td>
<td>19</td>
<td>34</td>
<td>70</td>
<td>39</td>
<td>22</td>
<td>13</td>
<td>21</td>
<td>20</td>
<td>13</td>
<td>5</td>
<td>317</td>
<td>2%</td>
</tr>
<tr>
<td>Multifamily</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>49</td>
<td>10</td>
<td>16</td>
<td>14</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>120</td>
<td>1%</td>
</tr>
<tr>
<td>Junction City</td>
<td></td>
</tr>
<tr>
<td>Single family</td>
<td>15</td>
<td>12</td>
<td>34</td>
<td>13</td>
<td>10</td>
<td>13</td>
<td>8</td>
<td>78</td>
<td>43</td>
<td>37</td>
<td>56</td>
<td>13</td>
<td>40</td>
<td>372</td>
<td>3%</td>
</tr>
<tr>
<td>Multifamily</td>
<td>0</td>
<td>4</td>
<td>0%</td>
</tr>
<tr>
<td>Veneta</td>
<td></td>
</tr>
<tr>
<td>Single family</td>
<td>11</td>
<td>24</td>
<td>43</td>
<td>96</td>
<td>112</td>
<td>117</td>
<td>128</td>
<td>62</td>
<td>19</td>
<td>21</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>668</td>
<td>5%</td>
</tr>
<tr>
<td>Multifamily</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Oakridge</td>
<td></td>
</tr>
<tr>
<td>Single family</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>11</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>49</td>
<td>0%</td>
</tr>
<tr>
<td>Multifamily</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Single family</td>
<td>926</td>
<td>1,066</td>
<td>1,164</td>
<td>1,091</td>
<td>1,106</td>
<td>1,262</td>
<td>971</td>
<td>807</td>
<td>432</td>
<td>332</td>
<td>406</td>
<td>250</td>
<td>322</td>
<td>10,135</td>
<td>69%</td>
</tr>
<tr>
<td>Multifamily</td>
<td>177</td>
<td>150</td>
<td>208</td>
<td>190</td>
<td>363</td>
<td>695</td>
<td>460</td>
<td>359</td>
<td>213</td>
<td>215</td>
<td>204</td>
<td>484</td>
<td>744</td>
<td>4,462</td>
<td>31%</td>
</tr>
<tr>
<td>Total of all types</td>
<td>1,103</td>
<td>1,216</td>
<td>1,372</td>
<td>1,281</td>
<td>1,469</td>
<td>1,957</td>
<td>1,431</td>
<td>1,166</td>
<td>645</td>
<td>547</td>
<td>610</td>
<td>734</td>
<td>1,066</td>
<td>14,597</td>
<td>100%</td>
</tr>
</tbody>
</table>

Note: All dwellings within the city limits.
2.2 Trends in housing mix

Housing mix is the mixture of housing (structure) types (e.g., single-family detached or apartments) within a city. State law requires a determination of the future housing mix in the community and allows that determination to be based on different periods: (1) the mix of housing built in the past five years or since the most recent periodic review, whichever time period is greater, (2) a shorter time period if the data will provide more accurate and reliable information, or (3) a longer time period if the data will provide more accurate and reliable information (ORS 197.296). This section presents housing mix data for two periods (a) housing mix over the 2001 to 2012 period and (b) housing mix further back, including in 1990 and 2000.

There are several ways to look at change in housing mix over time, each of which shows a slightly different mix of housing. Table 1 shows the mix of housing building permits issued in Eugene between 2001 and 2012. Table 4 shows changes in housing mix observed through address and tax lot data over the 2001 to 2012 period. Table 5 shows changes in the mix of housing stock in Eugene reported in the census over the 1990 to 2011 period. The information about housing mix for building permits issued and for dwelling units built over the last few years (Table 2 and Table 4) provide useful information about recent trends in housing mix, which may be helpful in forecasting changes in housing mix. Longer-term information about the mix of the City’s entire housing stock (Table 5) also provides useful information for forecasting changes in housing mix.

Table 4 shows the observed housing mix for residential development over the 2001 to 2012 period. ECO selected this time period over the 2001 to 2012 period because it shows housing mix that occurred since the City’s revised zoning ordinance went into effect in 2001.

About 63% of housing developed between 2001 and 2012 was single-family detached (including manufactured homes), 9% was single-family attached, and the remaining 28% were structures with two or more units.

| Table 4. Observed housing mix for residential development, Eugene, 2001 to 2012 |
|---------------------------------|------------|------------|------------|
| | New DU | Percent | New DU | Percent | New DU | Percent |
| Single-Family Detached | 5,058 | 63% | 4,503 | 69% | 555 | 39% |
| Single-Family Attached | 684 | 9% | 660 | 10% | 24 | 2% |
| Structure with 2 to 4 units | 576 | 7% | 371 | 6% | 205 | 14% |
| Structure with 5+ units | 1,653 | 21% | 998 | 15% | 655 | 46% |
| Total | 7,971 | 100% | 6,532 | 100% | 1,439 | 100% |

Source: City of Eugene Planning Department, 2012; Analysis by ECONorthwest
Note: Single-family detached includes secondary dwelling units and manufactured homes. Based on address point data and Assessor tax lot information.
A caveat about the information presented in Table 4: the data about residential development is both complex and somewhat scant. Each development may have idiosyncrasies, such as factors that limit development density or footprint (such as a stream). Moreover, it is typical to see cycles in building: for example, a lot of single-family units get built so then a lot of multi-family follows. For example, the achieved mix over the 2001 to 2008 period (69% single-family housing types and 31% attached housing types) was the result of an unusual housing market bubble. Similarly, the mix of housing developed over the 2009 to 2012 period (39% single-family housing types and 61% attached housing types) was the result of a historic downturn in the housing market. It seems unlikely that either will be repeated over the 20-year period. ECO recommends looking at building trends broadly and on average over a several-year period (e.g., for the entire 2001 to 2012 period), rather than on a shorter-term basis.

Table 5 shows changes in Eugene’s housing mix from 1990 to 2011, based on U.S. Census data. Between 1990 and 2011, Eugene increased its housing stock by 47%, adding 22,361 dwelling units. Between 1990 and 2000, the mix of housing did not change substantially. In 2011, the share of single-family detached units (e.g., single-family houses and manufactured homes) was 56%, down from 59% in 2000.

Over half of new dwellings built in Eugene over the 1990 to 2011 period were attached housing types (e.g., single-family attached and structures with two or more units), accounting for more than 11,400 new units built. The share of attached structures increased slightly, accounting for 40% of dwellings in 1990 and 46% of dwellings in 2011.

Table 5. Dwelling units by type, Eugene city limits, 1990, 2000, and 2011

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Units</td>
<td>Percent</td>
<td>Units</td>
<td>Percent</td>
</tr>
<tr>
<td>Single-family detached</td>
<td>28,768</td>
<td>60%</td>
<td>36,151</td>
<td>59%</td>
</tr>
<tr>
<td>Single-family attached</td>
<td>3,264</td>
<td>7%</td>
<td>4,011</td>
<td>7%</td>
</tr>
<tr>
<td>Two to four units</td>
<td>4,886</td>
<td>10%</td>
<td>5,877</td>
<td>10%</td>
</tr>
<tr>
<td>Five or more units</td>
<td>11,073</td>
<td>23%</td>
<td>15,293</td>
<td>25%</td>
</tr>
<tr>
<td>Total</td>
<td>47,991</td>
<td>100%</td>
<td>61,332</td>
<td>100%</td>
</tr>
</tbody>
</table>

Note: Single-family detached housing includes manufactured homes. The Census does not distinguish between manufactured homes in parks or on single lots. Includes all dwellings within city limits.
2.3 Trends in Tenure

The housing mix by type (i.e., percentage of single-family detached, single-family attached, and multi-family dwellings) is an important variable in any housing needs assessment. Distribution of housing types is influenced by a variety of factors, including the cost of new home construction, area economic and employment trends, demographic characteristics, and amount of land zoned to allow different housing types and densities.

Figure 3 show changes in Eugene’s tenure for occupied units from 1990-2010. About 50% of housing in Eugene was owner-occupied in 2010, consistent with homeownership rates in 1990 and 2000.

Eugene’s homeownership rate has historically been lower than the County or State average. In 2011, Eugene’s homeownership rate (45%) was lower than the County average of 60% or the State average of 62%. Eugene’s relatively low homeownership rate is consistent with Eugene’s large population of students, such as those attending the University of Oregon.

Figure 3. Housing units by type and tenure, Eugene, 2011

Note: Single-family detached includes manufactured homes.
Note: The number of dwelling units in Eugene shown in Table 2, Table 4, and Table 5 differ because the tables show different information. Table 3 shows all units, Table 4 shows occupied units, and Table 6 shows occupied units where housing type is known.
Table 6 and Figure 3 show type of dwelling by tenure (owner/renter-occupied) in Eugene in 2011. The results show that single-family detached housing types have a much higher ownership rate than other housing types—72% of owner-occupied units were single-family detached.

Multi-family housing types were predominately renter occupied. More than 95% of structures with two or more units were renter-occupied. Seventy-five percent of single-family attached dwellings were renter occupied and 28% of single-family detached units were renter occupied.

Table 6. Housing units by type and tenure, Eugene, 2011

<table>
<thead>
<tr>
<th>Housing type</th>
<th>Owner Occupied</th>
<th>Renter Occupied</th>
<th>All Dwellings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percent</td>
<td>Number</td>
</tr>
<tr>
<td>Single-family detached</td>
<td>27,652</td>
<td>72%</td>
<td>10,603</td>
</tr>
<tr>
<td>Single-family attached</td>
<td>1,201</td>
<td>25%</td>
<td>3,550</td>
</tr>
<tr>
<td>Two to four units</td>
<td>329</td>
<td>5%</td>
<td>6,932</td>
</tr>
<tr>
<td>Five or more units</td>
<td>469</td>
<td>3%</td>
<td>15,390</td>
</tr>
<tr>
<td>Total</td>
<td>29,651</td>
<td>36,475</td>
<td>66,126</td>
</tr>
</tbody>
</table>

Source: American Community Survey 2011 B25032
Note: Single-family detached includes manufactured homes.
Note: The number of dwelling units in Eugene shown in Table 2, Table 4, and Table 5 differ because the tables show different information. Table 3 shows all units, Table 4 shows occupied units, and Table 6 shows occupied units where housing type is known.

2.4 Density

Housing density is the density of housing by structure type, expressed in dwelling units per net or gross acre.6

The U.S. Census does not track residential development density. This study analyzes housing density based on development between 2001 and 2012 because changes to the City’s zoning code went into effect in 2001 that affect housing development.

Table 7 shows average net residential development by structure type for the 2001 to 2012 period using address point and tax lot data. Table 7 shows that the City added 7,971 new dwelling units during the 2001 to 2012 period. The tax lots with these new dwelling units had 2,351 pre-existing dwelling units (e.g., units built before 2001). The average density

6 OAR 660-024-0010(6) uses the following definition of net buildable acre. “Net Buildable Acre” consists of 43,560 square feet of residentially designated buildable land after excluding future rights-of-way for streets and roads. While the administrative rule does not include a definition of a gross buildable acre, using the definition above, a gross buildable acre will include areas used for rights-of-way for streets and roads. Areas used for rights-of-way are considered unbuildable.
for all residential development over the 2001 to 2012 period was 7.5 dwellings per net acre.

Table 7 shows that single-family detached housing (including secondary dwelling units and manufactured homes) averaged a density of 5.4 dwelling units per net acre. Multi-family structures had a density of 10.4 dwelling units per net acre for two to four units, 20.5 units per net acre for single-family attached, and structures with five or more units had a density of 24.4 units per net acre.

Table 7. Average development density by structure type, dwelling units per net acre, 2001-2012, Eugene UGB

<table>
<thead>
<tr>
<th>Structure type</th>
<th>Pre-existing DU</th>
<th>All DU Built 2001-2012</th>
<th>Total DU</th>
<th>Net Acres</th>
<th>Du / Net Ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Family Detached</td>
<td>1,288</td>
<td>5,058</td>
<td>6,346</td>
<td>1,168</td>
<td>5.4</td>
</tr>
<tr>
<td>Single-Family Attached</td>
<td>5</td>
<td>684</td>
<td>689</td>
<td>34</td>
<td>20.5</td>
</tr>
<tr>
<td>Structure with 2 to 4 units</td>
<td>227</td>
<td>576</td>
<td>803</td>
<td>77</td>
<td>10.4</td>
</tr>
<tr>
<td>Structure with 5+ units</td>
<td>831</td>
<td>1,653</td>
<td>2,484</td>
<td>102</td>
<td>24.4</td>
</tr>
<tr>
<td>Total</td>
<td>2,351</td>
<td>7,971</td>
<td>10,322</td>
<td>1,380</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Source: LCOG GIS data and City of Eugene Planning Department
Note: City staff ground-truthed the density analysis results through review of aerial photos, review of RLID and GeoDart address files and a review of relevant permit data. Staff found that some lots had residential development built prior to 2001, through phased development of multi-family housing (structures with more than two units) in Medium and High Density Plan Designations. Phased development often occurs over a number of years and may include developing multiple types of housing on the same tax lot. Phased development over multiple years on one tax lot does not generally occur in Low Density Residential or with single-family housing. Table 7 accounts for pre-existing development, in order to accurately determine the net density. Based on address and tax lot data.

7 The density of 7.5 units per net acre accounts for all development on shown in Table 7. While the density analysis focuses on development that occurred between 2001 and 2012, we would underestimate density on these taxlots if we did not account for pre-existing dwelling units, such as dwellings built in phased development prior to 2001.
Table 8 shows average development density by Comprehensive Plan Designation and structure type for the 2001 to 2012 period. Table 8 shows that residential density varied by plan designation and structure type.

- **Low Density Residential** had about 62% of development, averaging 5.4 dwelling units per net acre.
- **Medium Density Residential** had about 19% of development, averaging 13.4 dwelling units per net acre.
- **High Density Residential** had about 19% of development, averaging 32.6 dwelling units per net acre.
- **Mixed Use Designations** had less than 1% of development, averaging between 5.8 and 20.4 dwelling units per net acre.

Table 8. Average development density by Comprehensive Plan Designation and structure type, dwelling units per net acre, 2001-2012, Eugene UGB

<table>
<thead>
<tr>
<th>Plan Designation</th>
<th>Average Density (dwelling units per net acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single-Family Detached</td>
</tr>
<tr>
<td>Low Density Residential</td>
<td>5.3</td>
</tr>
<tr>
<td>Medium Density Residential</td>
<td>7.9</td>
</tr>
<tr>
<td>High Density Residential</td>
<td>15.4</td>
</tr>
<tr>
<td>Medium Density Residential Mixed Use</td>
<td>4.5</td>
</tr>
<tr>
<td>High Density Residential Mixed Use</td>
<td>5.8</td>
</tr>
<tr>
<td>Mixed Use</td>
<td>8.5</td>
</tr>
<tr>
<td>Average density by housing type</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Source: LCOG GIS data and City of Eugene Planning Department
A previous section described the framework for conducting a housing "needs" analysis. ORS 197.296 (HB 2709) requires cities with a population over 25,000 or fast growing cities to conduct a housing needs analysis. A recommended approach is described in Task 3 of the HB 2709 Workbook. The specific steps in the housing needs analysis are:

1. Project number of new housing units needed in the next 20 years.
2. Identify relevant national, state, and local demographic and economic trends or factors that may affect the 20-year projection of structure type mix.
3. Describe the demographic characteristics of the population and, if possible, housing trends that relate to demand for different types of housing.
4. Determine the types of housing that are likely to be affordable to the projected households based on household income.
5. Estimate the number of additional needed units by structure type.
6. Determine the needed density ranges for each plan designation and the average needed net density for all structure types.
3.1 Step 1: Project number of new housing units needed in the next 20 years

The first step is to project the number of new housing units needed during the planning period. This section describes the key assumptions and presents an estimate of new housing units needed in Eugene between 2012 and 2032. The key assumptions are based on the best available data and rely on safe harbor provisions, when applicable. Trends that may affect these assumptions and Eugene’s housing need are described in Step 2 of the housing needs analysis.

3.1.1 Population

A 20-year population forecast is the foundation for estimating needed new dwelling units. On June 17, 2009, Lane County adopted a coordinated population forecast for the period from 2012 to 2032. This population forecast was then formally adopted into the Metro Plan. The forecast projects that population inside the Eugene UGB will grow from 177,775 people in 2010 to 219,059 people in 2035. The city sent a Notice of Proposed Urban Growth Boundary to the state in October of 2012 and stated that the City initially scheduled completion of its UGB review for 2012. Consistent with OAR 660-024-0040(2)(a), the planning period must commence on the date initially scheduled for final adoption, therefore, Eugene established its 20-year planning period as beginning in 2012.

Extrapolating the 2010 population to the 2012 population (using the adopted growth rate of 0.88% per year), Eugene’s forecasted population for 2012 is 180,915 people. Extrapolating the 2010 population to the 2032 population using the same method shows that Eugene’s population will

8 A safe harbor is an assumption that a city can use in a housing needs analysis that the State has said will satisfy the requirements of Goal 14. OAR 660-024 defined a safe harbor as “... an optional course of action that a local government may use to satisfy a requirement of Goal 14. Use of a safe harbor prescribed in this division will satisfy the requirement for which it is prescribed. A safe harbor is not the only way or necessarily the preferred way to comply with a requirement and it is not intended to interpret the requirement for any purpose other than applying a safe harbor within this division.”

9 The State has now instituted a new program under which the Portland State University Population Research Center will prepare population forecasts for city planning purposes. The statute that adopted the new program included a “grandfather” clause that allows Eugene to continue to use the population forecast described above. Oregon laws 2013 c 574 § 3.

10 Eugene and Springfield adopted ordinances (Eugene Ordinance No. 20437) on October 13, 2009, which amended the Metro Plan to include forecasts of population growth for the years 2030 through 2035.
be 214,693 people by 2032. The analysis assumes that Eugene will grow by 33,778 people between 2012 and 2032.

3.1.2 Persons in group quarters

Persons in group quarters do not consume standard housing units. Thus, any forecast of new people in group quarters is typically backed out of the population forecast for the purpose of estimating housing demand (group quarters is then accounted for later in the demand analysis). Group quarters can have a big influence on housing in cities with colleges (dormitories), correctional facilities, or a large elderly population (nursing homes). In general, any new requirements for these housing types will be met by institutions (colleges, government agencies, health-care corporations) operating outside of what is typically defined as the housing market. However, group quarters require land and are typically built at densities that are comparable to multi-family dwellings.

Table 9 shows persons in group quarters in the Eugene as reported by the 1990, 2000, and 2010 Decennial Census and 2011 American Community Survey. The share of persons in group quarters varied from 5.5% in 1990 to 4.0% in 2011.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Population</th>
<th>Persons in Group Quarters</th>
<th>Percent in Group Quarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>112,669</td>
<td>6,174</td>
<td>5.5%</td>
</tr>
<tr>
<td>2000</td>
<td>137,893</td>
<td>6,086</td>
<td>4.4%</td>
</tr>
<tr>
<td>2010</td>
<td>156,185</td>
<td>7249</td>
<td>4.6%</td>
</tr>
<tr>
<td>2011</td>
<td>156,921</td>
<td>6,303</td>
<td>4.0%</td>
</tr>
</tbody>
</table>

Source: U.S. Census 1990 SF1 P028, U.S. Census 2000 SF1 P37, American Community Survey 2007 B26001

Consistent with the 2010 Census data, the analysis assumes that 4.6% of new persons (1,554 persons) in Eugene between 2012 and 2032 will reside in group quarters. The majority of these new persons will live in congregate housing or assisted living quarters.

The share of population in group quarters may be affected by two trends: (1) growth in student population at the University of Oregon and (2) growth in retirees. Growth in the student population will be affected by change in enrollment growth at the University of Oregon and the University’s provision of dormitory space. The University projects flat enrollment over the 2012 to 2021 period, with an enrollment of about
24,500 students consistently over this period.11 The University plans to build an approximately 1,500 additional bed spaces over the 2007 to 2017 period.12

The housing choice of retirees may also affect the share of population in group quarters. The State Office of Economic Analysis (OEA) projects that the share of population of people 60 years and older in Lane County will increase from 17% of the population in 2000 to 26% of the population in 2030.13 Seniors have a range of housing choices, from remaining in their current home, downsizing to a smaller home, moving to independent living situations, and nursing homes. Younger, independent seniors have a preference for aging in place or choose housing that allows them greater independence, such as age restricted communities.14 As seniors age or their health deteriorates, housing choices may include assisted living facilities and nursing homes. It is difficult to estimate how much the aging of the population and greater housing choice for seniors will affect the share of population in group quarters.

The trends described above suggest that population in group quarters may increase but does not provide a clear indication of how large that increase could be. For example, multiple factors could impact the University’s plans to build new dorms, including student housing preferences, flat enrollment projections, and availability of State funds to build new dormitories. Senior housing preferences could also affect growth in population in group quarters. While the senior population is growing, seniors are frequently choosing independent living situations, unless health factors require nursing care.

11 University of Oregon Enrollment Projections, supplied by J.P. Monroe, Ph. D., Director of Institutional Research, March 2013.
14 AARP, Fixing to Stay: A national survey of housing and home modification issues, May 2000 http://www.aarp.org/research/surveys/stats/surveys/public/articles/aresearch-import-783.html
3.1.3 Household size

Table 13 (on page 60) shows historical trends in household size and demographic changes that may affect future average household size. The best available and most recent data for average household size is from the 2010 Decennial Census, which presents information about average household size for all households in Eugene. While the 2011 American Community Survey data about average household size is one year more recent, it is based on a sample of households in Eugene. This analysis uses the average household size from the 2010 Decennial Census (2.24 persons per household), given the fact that the Decennial Census is a survey of all households in Eugene. **The analysis assumes that Eugene will have an average household size of 2.24 persons per household for the 2012 to 2032 period.**

3.1.4 Vacancy rate

Vacant units are the final variable in the basic housing need model. Vacancy rates are cyclical and represent the lag between housing demand and the market’s response to that demand by producing additional dwelling units. Vacancy rates for rental and multi-family units are typically higher than those for owner-occupied and single-family dwelling units.

Figure 4 shows that the average vacancy rate for all housing types Eugene varies by time period. Eugene’s recent vacancy rates were 5.0% in 2010 and 6.0% in 2011.

Figure 4. Average vacancy rate, Eugene, 1990, 2000, 2010, and 2011

![Vacancy Rate Chart]

Source: U.S. Census 1990 SF1 H002, U.S. Census 2000 SF1 H3, American Community Survey 2011 B25002
This data suggests that vacancy rates in Eugene have varied over the 1990 to 2011 period on an annual basis. In reality, vacancy rates are cyclical and vary across the year. For examples, vacancy rates tend to be lower in September, at the start of the University of Oregon school year, and higher during the summer, when the University of Oregon is not in session.

Up until 2006, Duncan and Brown, a Eugene real estate analysis firm, produced reports about housing rentals and vacancies in the Eugene-Springfield region. Fall vacancy rates for apartments varied between about 0.5% to about 5.2% between 1990 and 2006. Vacancy rates in Eugene’s neighborhoods also varied by area, with vacancy rates generally lower near the University and higher further away from the University.15

The analysis assumes a 5.0% average vacancy rate in Eugene for the 2012 to 2032 period, based on recent vacancy rates.

3.1.5 Forecast of new housing units, 2012-2032

The preceding analysis leads to a forecast of new housing units likely to be built in Eugene during the 2012 to 2032 period and outlines the building blocks of a housing demand analysis. Table 10 shows an estimate of needed housing in Eugene for the 2012 to 2032 period, based on recent data. The projection is based on the following assumptions:

- Population will increase by 33,778 people from 2012 to 2032, as forecast in Lane County’s adopted population forecast.
- About 4.6% percent of the new population or 1,554 people will live in group quarters, based on the share of population in group quarters from the 2010 Census and the assumption that the share of population in group quarters will not change.
- The average household size will be 2.24 people per household, based on information from the 2010 Census.
- Vacancy rates for all housing types will be 5.0%, based on recent vacancy rates in Eugene.

Based on the assumptions shown in Table 10, Eugene will need 15,105 new dwelling units to accommodate population growth between 2012 and 2032, not including new group quarters. The results indicate that Eugene will need to issue permits for 719 new dwelling units annually during the planning period. This figure is about the same as the 736 dwelling units

approved annually during the 2001 to 2012 period and is substantially below the peak of 941 to 1,412 permits issued annually over the 2004 to 2006 period.

Table 10. Forecast of demand for new housing units, Eugene, 2012-2032

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate of Housing Units (2012-2032)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in persons</td>
<td>33,778</td>
</tr>
<tr>
<td>minus Change in persons in group quarters</td>
<td>1,554</td>
</tr>
<tr>
<td>equals Persons in households</td>
<td>32,224</td>
</tr>
<tr>
<td>Average household size</td>
<td>2.24</td>
</tr>
<tr>
<td>New occupied DU</td>
<td>14,386</td>
</tr>
<tr>
<td>times Aggregate vacancy rate</td>
<td>5%</td>
</tr>
<tr>
<td>equals Vacant dwelling units</td>
<td>719</td>
</tr>
<tr>
<td>Total new dwelling units (2012-2032)</td>
<td>15,105</td>
</tr>
</tbody>
</table>

Source: Calculations by ECONorthwest based on Eugene’s adopted population forecast and US Census data.
3.2 Step 2: Identify relevant national, state, and local demographic and economic trends and factors that may affect the 20-year projection of housing type mix

3.2.1 National Housing Trends

The overview of national, state, and local housing trends builds from previous work by ECO, Urban Land Institute (ULI) reports, and conclusions from The State of the Nation’s Housing, 2012 report from the Joint Center for Housing Studies of Harvard University.¹⁶ The Harvard report summarizes the national housing outlook as follows:

“After several false starts, there is reason to believe that 2012 will mark the beginning of a true housing market recovery. Sustained employment growth remains key, providing the stimulus for stronger household growth and bringing relief to some distressed homeowners. Many rental markets have already turned the corner, giving a lift to multi-family construction but also eroding affordability for many low-income households. While gaining ground, the homeowner market still faces multiple challenges. If the broader economy weakens in the short term, the housing rebound could again stall.”

The national housing market continues to suffer from a large backlog of foreclosed homes, large numbers of ‘underwater’ mortgages, and high vacancy rates. The eventual recovery of the national housing market is dependent on near-term resolution of outstanding foreclosures and long-term job growth and expansion of the economy.

Recent trends in home ownership and demand

The last seven years saw a continuation of the significant departure from the recent housing boom that had lasted for 13 consecutive years (1992-2005). While strength in early 2005 pushed most national housing indicators into record territory, the market began to soften and sales slowed in many areas in the latter half of 2005. By 2006, higher prices and rising interest rates had a negative impact on market demand. Investor demand, home sales and single-family starts dropped sharply. Growth in national sales prices also slowed. By 2007 and early 2008, housing market problems had reached the rest of the economy, resulting in a nationwide

¹⁶ http://www.jchs.harvard.edu/research/publications/state-nation%E2%80%99s-housing-2012
economic slowdown and recession. The slowdown has continued through 2012, although the national housing market shows signs of recovery.

Figure 5 shows the housing market cycles for the last four decades, from the 1970’s through the 2000’s. The housing downturn and recovery in the 2000’s is weaker than any housing cycle since the 1970’s. Most notably, housing starts have been below 1 million units per year since 2009, with little of the rebound present after housing troughs in other decades.

Figure 5. Housing market cycles, housing starts (in millions), 1970’s to 2000’s

![Housing Market Cycles Chart](http://www.jchs.harvard.edu/son/index.htm)

From 2000 to 2005, housing starts and manufactured home placements appeared to have been roughly in line with household demand. In 2005, with demand for homes falling but construction coming off record levels, the surplus of both new and existing homes was much higher than in recent years. Between July 2006 and January 2009, the number of new homes for sale fell by 41% and demand dropped even faster. The supply of new homes for sale reached 12.4 months, the highest in U.S. history.

Home sales remained lackluster through most of 2011, but increased strongly in late 2011 and early 2012. The supply of new homes for sale
reached 6.2 months in the first quarter of 2012, the lowest level since 2006. According to the Joint Center for Housing Studies, a six-month supply is a rough indicator of market balance.

However, the promising home supply figures do not account for the number of vacant units held off the market. In 2011, the number of vacant units held off market rose to 5.5% of housing stock, up from about 4.5% in 2000-2002. When these units come on the market, they could drag home prices down further.

The Joint Center for Housing Studies concludes that the cooling housing market in 2006 and the foreclosure crisis had an immediate impact on homeownership (Figure 7). Homeownership peaked at 69.9% in 2005. After 13 successive years of increases, the national homeownership rate slipped each year from 2005 to 2011 and was at 65.4% in the first quarter of 2012. The Joint Center for Housing Studies predicts that the homeownership rate will continue to decline in the near-term due to the foreclosure backlog and tight credit conditions. As Figure 6 shows, the homeownership rate among seniors has remained high.

Figure 6. Change in Homeownership Rate (percentage points) by age group, 1982-2011.

The number of delinquent loans or home foreclosures has begun to decrease, although a large number of homes remain in foreclosure proceedings. As Figure 7 shows, the number of loans that are 90 days or more delinquent decreased since its peak in late 2009. At the end of 2009, 5.1% of mortgages were 90 days or more delinquent; by the first quarter of
2012, the percent had fallen to 3.1%. Over the same period, the backlog of loans in the foreclosure process decreased only slightly, from 4.6% to 4.4% of mortgages. Delinquencies and foreclosures are concentrated by state, with California, Florida, Nevada, and Arizona hit particularly hard. Between early 2007 and the first quarter of 2010, 6.1 million foreclosure notices were issued on first-lien loans. In early 2010, the number of loans in the foreclosure process was 2.1 million, which was nearly four times the number of foreclosures in process three years earlier.

Figure 7. Number of loans (millions) in foreclosure proceedings

Since 2008, foreclosures have contributed to a sharp decrease in housing prices, leaving roughly 11.1 million homeowners underwater on their mortgages (where the value of the house is less than the owner’s mortgage). These loans equate to $717 billion in negative equity. As with home foreclosures, underwater mortgages are concentrated geographically. In Nevada, 61% of mortgages are underwater, the highest rate in the country. Florida and California account for more than a third of the nation’s underwater mortgages.

Long run trends in home ownership and demand

The long-term market outlook shows that homeownership is still the preferred tenure. While further homeownership gains are likely during the next decade, they are not assured. Additional increases depend, in
part, on the effect of foreclosures on potential owner’s ability to purchase homes in the future, as well as whether the conditions that have led to homeownership growth can be sustained. The Urban Land Institute forecasts that homeownership will decline to the low 60 percent range by 2015.17

The Joint Center for Housing Studies indicates that demand for new homes could total as many as 12 million units nationally between 2010 and 2020. The location of these homes may be different than recent trends, which favored lower-density development on the urban fringe and suburban areas. The Urban Land Institute identifies the markets that have the most growth potential are “global gateway, 24-hour markets,” which are primary coastal cities with international airport hubs (e.g., Washington D.C., New York City, San Francisco, or Seattle). Development in these areas may be nearer city centers, with denser infill types of development.18

The Joint Center for Housing Studies also indicates that demand for higher density housing types exists among certain demographics. They conclude that because of persistent income disparities, as well as the movement of the echo boomers into young adulthood, housing demand may shift away from single-family detached homes toward more affordable multi-family apartments, town homes, and manufactured homes.

Home rental trends

Nationally, the rental market continues to experience growth, adding 1.0 million rental households in 2011 and averaging 730,000 new rental households per year from 2005 through 2011. After an increase in the overall rental vacancy rate from 9.6% in 2007 to 10.6% in 2009, the rental market has begun to tighten. The rental vacancy rate fell to 9.5% in 2011.

Over the longer term, the Joint Center for Housing expects demand for rental housing to continue to grow. Minorities will be the largest driver of rental demand, because they are on average younger and less likely to own homes than whites. In 2011, minorities accounted for 46% of rental households but only 30% of all households. From 2004 to 2011, minorities contributed 59% of the growth in number of rental households. The foreign-born share of renter-occupied households increased from 17.4% in

17 John McIlwain, “Housing in America: The Next Decade,” Urban Land Institute

18 Urban Land Institute, “2011 Emerging Trends in Real Estate” and “2012 Emerging Trends in Real Estate”
2000 to 19.6% in 2009 and the number of Latino19 renters has increased from 1.9 million in 1980 to 7.0 million in 2009. Demographics will also play a role. Growth in young adult households will increase demand for moderately priced rentals, in part because the oldest echo boomers reached their late-20s in 2010. Meanwhile, growth among those between the ages of 45 and 64 will lift demand for higher-end rentals. Given current trends in home prices and interest rates, conditions will become increasingly favorable for rental markets in the coming years.

The Joint Center for Housing Studies highlights two recent trends in rental demographics: growth in demand among married couples and higher-income households. Increasingly, married couples rent rather than own. From 2006-2011, married couples accounted for 50% of the growth in renter households. In the last five years, the number of higher-income households renting has also increased. It is unclear whether these trends are solely a result of the foreclosure crisis and the Great Recession or if they will persist as the economy improves.

Despite decades of growth and the recent decline in vacancy rates, rents have failed to keep pace with inflation. Between the peak in late 2008 and April 2010, inflation-adjusted rents fell by 2.9%. Between 2010 and 2011, inflation-adjusted rents decreased by 1.5%. Although falling rents show signs of a weak rental housing market, they do help to alleviate pressure on low-income households struggling to pay their rent. However, the upper-end of the rental market is showing widespread increases in rent. In 2011, inflation-adjusted rent increased in nearly 60% of the markets tracked by MPF Research (Figure 8). Rent increases were largest in the West (5.2%) and the Northeast (6.5%).

19 Throughout this document, we generally refer to Hispanic and Latino people with the term “Latino”. In some tables or charts, we refer to Hispanic or Latino people. And when describing people who are not Hispanic nor Latino, we use the term “non-Hispanic”, based on terminology from the U.S. Census.
Figure 8. Inflation-adjusted change in rents, percentage change, fourth quarter 2010 to fourth quarter 2011 in 64 metro areas

Note: MPF Research data looks at professionally managed properties with 5 or more units in 64 metro areas.
Trends in housing affordability

House prices declined since the height of the housing bubble. Between October 2005 and March 2010, the median house price decreased by 26 percent. The price declines were about 50% greater than price declines at the high end of the housing market. The median home sales price dropped from 4.7 times the median household income in 2005 to 3.4 times median household income in 2009.

Figure 9 shows a comparison of monthly housing costs for mortgage payments and gross rent, in 2011 dollars. For the first time since the early 1970’s, monthly housing costs for mortgages on the typical home are less costly than the average rental unit.

Figure 9. Monthly housing costs for mortgage payment and gross rent costs, 2011 dollars

Despite widespread falling house prices, affordability problems have not improved significantly. A median-priced single-family home under conventional terms in 2007 (10% down payment and 30-year fixed rate loan) only costs $76 per month and $1,000 down payment less than a house bought in 2006, the year in which the sales prices of single-family homes were at their highest real price in history. Only 17 of the 138 National Association of Realtors-covered metropolitan areas have lower costs in 2007 than they did in 2003 when interest rates were bottomed out.

In 2010, more than one-third of American households spent more than 30% of income on housing, and 18% spent upwards of 50%. The number of severely cost-burdened households (spending more than 50% of income on housing) increased by 6.4 million households from 2001 to 2010, to a total of nearly 20.2 million households in 2010. In 2010, there was a 5.1

20 2010 American Community Survey, Table B25091 and Table B25070.
A million unit gap between supply and demand for affordable housing units.

Figure 10 shows that lower income households are more likely to be severely cost-burdened and that the share of households with severe cost-burden increased between 2001 and 2010. The number of severely cost-burdened households earning under $15,000 annually increased by about 1.5 million households between 2007 and 2010, which was nearly twice the increase between 2001 and 2007. With low-wage jobs increasing and wages for those jobs stagnating, affordability problems will persist even as strong fundamentals lift the trajectory of residential investment.

Figure 10. Percentage of households with severe cost burden by household income, 2001, 2007, and 2010

The Joint Center for Housing Studies points to widening income disparities, decreasing federal assistance, and depletion of inventory through conversion or demolition as three factors exacerbating the lack of affordable housing. While the Harvard report presents a relatively optimistic long-run outlook for housing markets and for homeownership, it points to the significant difficulties low- and moderate-income households face in finding affordable housing and preserving the affordable units that do exist.

According to the Joint Center for Housing Studies, these statistics understate the true magnitude of the affordability problem because they
do not capture the tradeoffs people make to hold down their housing costs. For example, these figures exclude people who live in crowded or structurally inadequate housing units, some 2.5 million households in 2010. They also exclude the growing number of households that move to locations distant from work where they can afford to pay for housing, but must spend more for transportation to work. Among households in the lowest expenditure quartile, those living in affordable housing spend an average of $100 more on transportation per month in 2010 than those who are severely housing cost-burdened. With total average monthly outlays of only $1,000, these extra travel costs amount to 10 percent of the entire household budget.

Demographic trends in housing preference

The demographic changes likely to affect the housing market and homeownership are:

- Immigrants and their descendants, who are a faster growing group than other households in the U.S.
- The aging of the baby boomers, the oldest of whom are in their late-60’s in 2012.
- Housing choices of younger baby boomers, who are in their late 40’s and early 50’s in 2010
- The children of baby boomers, called the echo boomers, who range from their late teens to late twenties in 2012

According to the Joint Center for Housing Studies, immigration will play a key role in accelerating household growth over the next 10 years. About 40% of the fall-off in household growth between 2007 and 2011 was due to a drop in immigration (Figure 11). Immigrants have traditionally comprised a growing share of young adults and children in the United States, but the number of foreign-born households under the age of 35 decreased by 338,400 between March 2007 and March 2009, compared to just 2,100 native-born households. The difficulty in assessing immigration during a recession results in an unclear picture of future housing demand. Deportations, emigration, and a weak US economy have all contributed to lower household formation among foreign-born non-citizens.

21 Urban Land Institute, “2011 Emerging Trends in Real Estate”
The lower rate of household formation by the native-born population accounts for about 60% of the current slowdown in household growth (Figure 11). Delayed household formation among the under-25 and 25-34 age groups is the strongest driver. More echo boomers are living with their parents; the share of under-25 year olds and 25-34 year olds living with their parents increased by 2.7 percentage points between 2006 and 2010. Headship rates among echo boomers are predicted to increase as the economy improves and as they age into older adulthood. The echo boomer generation, more populous than the baby boomers, is expected to be the primary driver of new household formation over the next twenty years.

The Joint Center for Housing Studies suggests that an aging population, and of baby boomers in particular, will drive changes in the age distribution of households in all age groups over 55 years. A recent survey of baby boomers showed that more than a quarter plan to relocate into larger homes and 5% plan to move to smaller homes.

The younger baby boomers face challenges resulting from the decrease in housing values, which has left many households with mortgages that are higher than the worth of the house. It may take years for the value of these houses to equal or exceed the value of the mortgage. Second home
demand among upper-income homebuyers of all ages also continues to grow, many of whom may be younger baby boomers. The ability to purchase second homes may be negatively affected by diminished earnings and lack of equity in primary homes.

People prefer to remain in their community as they age.22 The challenges that aging seniors face in continuing to live in their community include: changes in healthcare needs, loss of mobility, the difficulty of home maintenance, financial concerns, and increases in property taxes.23 Not all of these issues can be addressed through housing or land-use policies. Communities can address some of these issues through adopting policies that:

- Diversify housing stock to allow development of smaller, comparatively easily maintained houses in single-family zones, such as single story townhouses, condominiums, and apartments.
- Allow commercial uses in residential zones, such as neighborhood markets.
- Allow a mixture of housing densities and structure types in single-family zones, such as single-family detached, single-family attached, condominiums, and apartments.
- Promote the development of group housing for seniors that are unable or choose not to continue living in a private house. These facilities could include retirement communities for active seniors, assisted living facilities, or nursing homes.
- Design public facilities so that they can be used by seniors with limited mobility. For example, design and maintain sidewalks so that they can be used by people in wheel chairs or using walkers.

Figure 12 shows that the largest generation of people in the U.S. is the Echo Boomers, with about 85 million people in 2010. The Echo Boom generation is likely to grow even larger as new immigrants arrive. The oldest Echo Boomers turned 25 in 2010 and are beginning to form households. Echo Boomers will be the primary driver of growth in new households over the next twenty years.

22 A survey conducted by the AARP indicates that 90% of people 50 years and older want to stay in their current home and community as they age. See http://www.aarp.org/research.

23 “Aging in Place: A toolkit for Local Governments” by M. Scott Ball.
It is unclear what housing choices the echo boomers will make. Some studies suggest that their parents’ negative experience in the housing market, with housing values dropping so precipitously and so many foreclosures, will make echo boomers less likely to become homeowners. In addition, high unemployment and underemployment may decrease echo boomers’ earning power and ability to save for a down payment. It is not clear, however, that echo boomers’ housing preferences will be significantly different from their parents over the long run. A 2011 survey of housing preferences found that 86% of renters aged 18-34 believe that they will eventually become homeowners.24

24 Fannie Mae National Housing Survey, late 2011. Cited in The State of the Nation’s Housing 2012, Joint Center for Housing Studies.
Trends in Housing Characteristics

Figure 13 shows that, with few exceptions, suburban and other outlying areas grew faster than core cities during the 2000’s. The number of households living in core cities decrease in 28 of the largest 100 metro areas and was essentially flat in nine other metro areas. The number of households increased in about one-third of large metro areas.

Figure 13. Change in share of households located in core cities, major metropolitan areas, 2000 to 2010

The U.S Bureau of Census Characteristics of New Housing Report presents data that show trends in the characteristics of new housing for the nation, state, and local areas. Several long-term trends in the characteristics of housing are evident from the New Housing Report:

- Larger single-family units on smaller lots. Between 1990 and 2011 the median size of new single-family dwellings increased 17%, from 1,905 sq. ft. to 2,227 sq. ft. nationally and 11% in the western region from 1,985 sq. ft. to 2,199 sq. ft. Moreover, the percentage of units under 1,400 sq. ft. nationally decreased from 16% in 1999 to 13% in 2011. The percentage of units greater than 3,000 sq. ft. increased from 17% in 1999 to 26% of new one-family homes completed in 2011. In addition to larger homes, a move towards smaller lot sizes is seen nationally. Between 1990 and 2011 the percentage of lots under 7,000 sq. ft. increased from 27% of lots to 33% of lots.

- Larger multi-family units. Between 1999 and 2011, the median size of new multiple family dwelling units increased by 8% nationally and in the western region. The percentage of new multi-family
units with more than 1,200 sq. ft. increased from 28% in 1999 to 38% in 2011 nationally and from 26% to 35% in the western region.

- More household amenities. Between 1990 and 2011 the percentage of single-family units built with amenities such as central air conditioning, 2 or more car garages, or 2 or more baths all increased. The same trend in increased amenities is seen in multiple family units.

Over the last four years, the trend towards larger units with more amenities faltered. Between 2007 and 2011, the median size of new single-family units has decreased by 2% nationally to 2,227 square feet. The western region has seen a 4% decrease in median size of new single-family units, to a median of 2,199 square feet. In addition, the share of new units with amenities (e.g., central air conditioning, fireplaces, 2 or more car garages, or 2 or more bath) all decreased slightly.

It is unclear if these changes in unit size and amenities signal a long-term change in demand for housing or if these changes are a response to the current housing market turmoil. Numerous articles and national studies suggest that these changes may indicate a long-term change in the housing market, resulting from a combination of increased demand for rental units because of demographic changes (e.g., the aging of the baby boomers, new immigrants, and the echo-boomers), as well as changes in personal finance and availability of mortgages.25

These studies may be correct and the housing market may be in the process of a long-term change. On the other hand, long-term demand for housing may not be substantially affected by the current housing market. The echo-boomers and new immigrants may choose single-family detached housing and mortgages may become easier to obtain.

Studies and data analysis have shown a clear linkage between demographic characteristics and housing choice. This is more typically referred to as the linkage between life-cycle and housing choice and is documented in detail in several publications. Analysis of data from the Public Use Microsample (PUMS) in the 2000 Census helps to describe the relationship between selected demographic characteristics and housing choice. Key relationships identified through this data include:

- Homeownership rates increase as income increases;
- Homeownership rates increase as age increases;

• Choice of single-family detached housing types increases as income increases;
• Renters are much more likely to choose multiple family housing types than single-family; and
• Income is a stronger determinate of tenure and housing type choice for all age categories.
3.3 Step 3: Describe the demographic characteristics of the population and, if possible, housing trends that relate to demand for different types of housing

To understand the dynamics of the Eugene housing market, it is important to consider state and regional demographic and housing trends. Eugene exists in a regional economy; trends in the region impact the local housing market. Demographic trends provide a broader context for growth in a region; factors such as age, income, migration and other trends show how communities have grown and shape future growth. Characteristics such as age and ethnicity are indicators of how population has grown in the past and provide insight into factors that may affect future growth.

This section documents state and regional demographic and housing trends relevant to Eugene. To provide context, we compare Eugene with Lane County and Oregon where appropriate.
3.3.1 State Demographic Trends

Oregon’s Draft 2011-2015 Consolidated Plan includes a detailed housing needs analysis as well as strategies for addressing housing needs statewide. The plan concludes that “Oregon’s changing population demographics are having a significant impact on its housing market.” It identifies the following population and demographic trends that influence housing need statewide. Oregon is:

- Growing more slowly than the national average since 2007
- Facing housing cost increases but higher unemployment and lower wages, when compared to the nation
- Having higher foreclosure rates since 2005, compared with the previous two decades
- Losing federal subsidies on about 8% of federally subsidized Section 8 housing units
- Losing housing value in some markets within Oregon
- Losing manufactured housing parks, with a 25% decrease in the number of manufactured home parks between 2003 and 2010
- Increasingly older, more diverse, and, less affluent households

The US Census shows demographic changes taking place in Oregon. Oregon’s minority population grew quickly over the last decade. Minorities made up 16.5% of the population in 2000 and 21.5% of the population in 2010, a 46% increase. Hispanics and Latinos make up a large share of that population. The Latino population grew rapidly in Oregon during the 2000s. The growth rate of Oregon’s non-Hispanic population between 2000 and 2010 was 7.5% compared to 63.5% for Latinos and Latinos. However, Latino per capita income in 2010 was only 47% of white per capita income.

Growth in the Latino population slowed after 2007 as the Great Recession took hold and employment opportunities dwindled. If the economy rebounds, the Latino population may return to more typical growth during the second half of the 2010s.

The Latino population has different housing preferences and homeownership trends than the population as a whole. These include:

26 http://www.ohcs.oregon.gov/OHCS/HRS_Consolidated_Plan_5yearplan.shtml

27 State of Oregon Draft Consolidated Plan 2011 to 2015
- **A lower total level of homeownership.** Figure 14 shows that a smaller share of Latino households were homeowners (40%) in 2010, compared with non-Hispanic households (64%).

- **Higher levels of homeownership among young households.** 49% of Latino households aged 25 to 44 years were homeowners, compared with 24% of non-Hispanic households.

- **Higher fertility rates than non-Hispanic residents.** In 2010, for Oregon, white non-Hispanic women between the ages of 15 and 50 had 49 births per 1,000, lower than black non-Hispanics (59 per 1,000), and Latino (78 per 1,000).

If these trends continue and the Latino population grows, there will be more younger households (possibly with young children) in the market for purchasing a home. This has implications for the types of housing needed to meet the needs of these households.

Figure 14. Oregon homeownership distribution by age of householder and Latino origin, 2010
3.3.2 Regional and Local Demographic Trends

Regional demographic trends largely follow the statewide trends discussed above, but provide additional insight into how demographic trends might affect housing in Eugene. Demographic trends that might affect the key assumptions used in the baseline analysis of housing need are: (1) the aging population, (2) changes in household size and composition, and (3) increases in diversity. This section describes those trends.

Growing population

Population growth in Oregon tends to follow economic cycles. Historically, Oregon’s economy is more cyclical than the nation’s, growing faster than the national economy during expansions, and contracting more rapidly than the nation during recessions. Oregon grew more rapidly than the U.S. in the 1990s (which was generally an expansionary period) but lagged behind the U.S. in the 1980s. Oregon’s slow growth in the 1980s was primarily due to the nationwide recession early in the decade. As the nation’s economic growth slowed during 2007, Oregon’s population growth began to slow.

Table 11 shows that Oregon’s population grew from 2.8 million people in 1990 to 3.9 million people in 2012, an increase of over 1,000,000 people at an average annual rate of 1.43%. Oregon’s growth rate slowed to a 1.06% annual growth rate between 2000 and 2012.

Lane County grew slower than the State between 1990 and 2012, growing at 1.03% annually and adding over 71,000 people. About 45% of the County’s population lived in Eugene in 2012. Eugene’s population grew faster than the County average, at 1.56% annually, adding 45,666 residents over the twenty-two year period.

Table 11. Population in the U.S., Oregon, the Willamette Valley, Lane County, and Eugene, 1990-2012

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percent</td>
<td>AAGR</td>
<td></td>
</tr>
<tr>
<td>U.S.</td>
<td>248,709,873</td>
<td>281,421,906</td>
<td>313,914,040</td>
<td>65,204,167</td>
</tr>
<tr>
<td>Oregon</td>
<td>2,842,321</td>
<td>3,421,399</td>
<td>3,883,735</td>
<td>1,041,414</td>
</tr>
<tr>
<td>Willamette Valley</td>
<td>1,962,816</td>
<td>2,380,606</td>
<td>2,729,660</td>
<td>766,844</td>
</tr>
<tr>
<td>Lane County</td>
<td>282,912</td>
<td>322,959</td>
<td>354,200</td>
<td>71,288</td>
</tr>
<tr>
<td>Eugene</td>
<td>112,669</td>
<td>137,893</td>
<td>158,335</td>
<td>45,666</td>
</tr>
</tbody>
</table>

Notes: Benton, Clackamas, Lane, Linn, Marion, Multnomah, Polk, Washington, and Yamhill Counties represent the Willamette Valley Region.
Migration is the largest component of population growth in Oregon. Between 1990 and 2010, in-migration accounted for 68% of Oregon’s population growth. Over the same period, in-migration accounted for 75% of population growth in Lane County, adding more than 51,000 residents over the twenty-year period.

Aging population

Eugene’s population is generally younger than population in Lane County or Oregon. In 2011, Eugene’s median age was 33.3 years, compared to the County median of 39.0 years or the State average of 38.7 years. Figure 15 shows the populations of Oregon, Lane County, and Eugene by age for 2011. Eugene has a greater proportion of its population aged 20-29 years than the County or State averages. Eugene has comparatively fewer residents between 50 and 69 years than the state. Eugene’s age distribution affects housing need, as described later in this section.

Figure 15. Population distribution by age, Oregon, Lane County, and Eugene, 2011

Table 12 shows population by age for Eugene in 2000 and 2011. Eugene grew by 19,028 people between 2000 and 2011, which is a 14% increase. The age breakdown shows that Eugene had an increase in population for every age group over the age of 17. The fastest growing age groups were
aged 65 and over, 18 to 24, and 45 to 64. One group, 5 to 17, had negative growth.

Table 12. Population by age, Eugene, 2000 and 2011

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 5</td>
<td>7,367</td>
<td>5%</td>
<td>8,367</td>
<td>5%</td>
<td>1,000</td>
<td>14%</td>
<td>0%</td>
</tr>
<tr>
<td>5-17</td>
<td>20,686</td>
<td>15%</td>
<td>19,487</td>
<td>12%</td>
<td>-1,199</td>
<td>-6%</td>
<td>-3%</td>
</tr>
<tr>
<td>18-24</td>
<td>23,868</td>
<td>17%</td>
<td>31,751</td>
<td>20%</td>
<td>7,883</td>
<td>33%</td>
<td>3%</td>
</tr>
<tr>
<td>25-44</td>
<td>39,247</td>
<td>28%</td>
<td>41,482</td>
<td>26%</td>
<td>2,235</td>
<td>6%</td>
<td>-2%</td>
</tr>
<tr>
<td>45-64</td>
<td>30,068</td>
<td>22%</td>
<td>34,808</td>
<td>22%</td>
<td>4,740</td>
<td>16%</td>
<td>0%</td>
</tr>
<tr>
<td>65 and over</td>
<td>16,657</td>
<td>12%</td>
<td>21,026</td>
<td>13%</td>
<td>4,369</td>
<td>26%</td>
<td>1%</td>
</tr>
<tr>
<td>Total</td>
<td>137,893</td>
<td>100%</td>
<td>156,921</td>
<td>100%</td>
<td>19,028</td>
<td>14%</td>
<td>0%</td>
</tr>
</tbody>
</table>

The age distribution in Figure 15 shows a higher percentage of young adults (20-29) living in Eugene than in Lane County. In addition, Eugene’s median age is nearly six years younger than the County average. This indicates that Eugene’s population and age trends are somewhat different from the projections for the county as a whole. This difference can be explained by the presence of the University of Oregon, as well as other colleges such as Lane Community College and Northwest Christian College.

The overall change in the age distribution of Eugene’s population, however, is consistent with County and State trends. Between 2000 and 2011, the 45 to 64 age group grew by 31% statewide, by 24% in the County, and by 16% in Eugene. It had a larger increase in population than any other age group in each geography. Consistent with County and State trends, Eugene’s population is aging and the City is attracting new residents that are 45 years and older.
Figure 16 shows the Office of Economic Analysis’s (OEA) forecast of population by age group for 2000 to 2040 for Lane County. The OEA forecasts that Lane County will experience growth in all age groups. The share of population in people 60 years and older is forecast to increase from 17% of the population in 2000 to 27% of the population in 2040. The share of population 29 years and younger is forecast to decrease from 42% in 2000 to 36% in 2040.

Figure 16. Change in population distribution by age, Lane County, 2000-2040

Source: Oregon Office of Economic Analysis.
http://www.oregon.gov/DAS/OEA/docs/demographic/pop_by_ageandsex.xls
Household size and composition

The average household size has decreased statewide over the past five decades. In Oregon, the average household size was 2.60 in 1980, 2.52 in 1990, 2.51 in 2000 and 2.47 in 2010. Households with three or more people accounted for 39% of households in 1990, decreasing to 35% in 2011. Even if the population were not growing, the impact of decreasing household size on housing demand is that there will be more households, which translates to a need for more housing units.

Table 13 shows average household size in Oregon, Lane County, and Eugene for 2000 and 2010. Table 13 shows that the 2000 Census estimated that Eugene had 2.27 persons per household. The 2010 American Community Survey estimated that household size decreased to 2.24 persons per household. This decrease in household size (by about 0.03 persons per household) is consistent with County and State trends.

Table 13. Average household size, Oregon, Lane County, and Eugene, 2000, 2010, and 2011

<table>
<thead>
<tr>
<th></th>
<th>Oregon</th>
<th>Lane County</th>
<th>Eugene</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average household size</td>
<td>2.51</td>
<td>2.42</td>
<td>2.27</td>
</tr>
<tr>
<td>Owner-occupied units</td>
<td>2.59</td>
<td>2.52</td>
<td>2.47</td>
</tr>
<tr>
<td>Renter-occupied units</td>
<td>2.36</td>
<td>2.25</td>
<td>2.05</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average household size</td>
<td>2.47</td>
<td>2.35</td>
<td>2.24</td>
</tr>
<tr>
<td>Owner-occupied units</td>
<td>2.53</td>
<td>2.42</td>
<td>2.40</td>
</tr>
<tr>
<td>Renter-occupied units</td>
<td>2.36</td>
<td>2.25</td>
<td>2.09</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average household size</td>
<td>2.50</td>
<td>2.37</td>
<td>2.28</td>
</tr>
<tr>
<td>Owner-occupied units</td>
<td>2.53</td>
<td>2.37</td>
<td>2.30</td>
</tr>
<tr>
<td>Renter-occupied units</td>
<td>2.44</td>
<td>2.38</td>
<td>2.26</td>
</tr>
<tr>
<td>Change 2000 to 2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average household size</td>
<td>-0.04</td>
<td>-0.07</td>
<td>-0.03</td>
</tr>
<tr>
<td>Owner-occupied units</td>
<td>-0.06</td>
<td>-0.10</td>
<td>-0.07</td>
</tr>
<tr>
<td>Renter-occupied units</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Source: U.S. Census 2000 and 2010 H12; American Community Survey 2011 B25010

The historical change in household size in Eugene over the last quarter-century has been a relatively slow decrease: from 1990 to 2010 the average annual rate of decrease was on the order of 0.01% per year. If Eugene’s household size continues to decrease, Eugene will need more dwelling units than the current forecast projects to accommodate expected population growth.
Figure 17 shows household size in Oregon, Lane County, and Eugene for 1990 and 2010. The share of one-person households in Eugene increased from 31% in 1990 to 33% in 2010, consistent with State and County trends. The share of three-person households in Eugene decreased from 34% to 31% in Eugene, consistent with State and County trends. These changes are consistent with the decrease in average household size shown in Table 13.

![Figure 17. Household size, Oregon, Lane County, and Eugene, 1990 and 2010](image)

Several trends may affect household future household size in Eugene:

- **Student housing preference.** Students at the University of Oregon accounted for about 16% of Eugene’s population in 2010. Student housing preferences can have an important impact on demand for housing in Eugene. Recent trends in student housing development include: (1) dwelling units with five or more bedrooms and shared common space and kitchen facilities and (2) dwelling units that are more similar to traditional apartments, with three or fewer bedrooms. These dwellings are most common in neighborhoods near the University and may have three or more students living in them. Though the market for this type of housing will be mostly limited to students, continued growth in this type of housing could increase average household size slightly across the City.

- **Aging of the population.** The following section describes the relationship between age and household size. In short, householders 45 years and older are more likely to live in single-person households than householders younger than 45 years. The OEA forecasts the greatest growth for people 60 years and older in Lane County over the next 20 years. The implication is that
household size may decrease as a result of the aging of the population.

Figure 18 shows household composition in Oregon, Lane County, and Eugene. In 2010, 24% of Eugene’s households had children, compared with 26% of Lane County’s households and 30% of Oregon’s households. Eugene had a smaller share of households with married couples (37%), with and without children, than the State (48%) or County (44%). Eugene had a larger share of non-family households (48%) than the County average (40%) or State average (36%).

Figure 18. Household composition, Oregon, Lane County, and Eugene, 2010

Source: 2010 Decennial Census, Table P20
Demographic factors affecting housing need

With changes in income, family composition, and age, housing needs change throughout a person’s life. There is no question that age affects housing type and tenure. Mobility is substantially higher for people aged 20 to 34. People in that age group will also have, on average, less income than people who are older. They are less likely to have children. All of these factors mean that younger households are much more likely to be renters and renters are more likely to be in multi-family housing.

The data in Figure 19 to Figure 21 illustrate what more detailed research has shown and what most people understand intuitively:

- Life cycles and housing choice interact in ways that are predictable in the aggregate.
- Age of the household head is correlated with household size and income.
- Household size affects housing preferences.
- Income affects the ability of a household to afford a preferred housing type.

The literature often informally describes the connection between socioeconomic and demographic factors, on the one hand, and housing choice, on the other, by giving names to households with certain combinations of characteristics: the "traditional family," the "never married," the "dinks" (dual-income, no kids), the "empty nesters." Thus, simply looking at the long wave of demographic trends can provide good information for estimating future housing demand.

Figure 19 shows households by household size and age of householder in Eugene and Oregon in 2011. Householders 15 to 54 are most likely to be in households with two or more people. Householders 55 years and older are more likely to live in single-person households. Nearly two-thirds of householders 75 years and older live in single-person households.

Figure 19. Households by household size and age of householder, Oregon and Eugene, 2011

Source: American Community Survey 2011 B25116

Figure 20 shows households by tenure and age of householder in Eugene and Oregon in 2011. Eugene had more renter-occupied units (55% of total) than owner-occupied households (45%). More than half of householders aged 45 and older were homeowners. Homeownership increases with age, until age 55. After age 75, homeownership decreases.

Figure 20. Households by tenure and age of householder, Oregon and Eugene, 2011

Source: American Community Survey 2011 B25007
Figure 21 shows households by tenure, size, and age of householder in Eugene in 2011. Figure 21 shows that:

- Householders between 55 and 74 years were more likely to be homeowners.
- Householders older than 75 years were more likely to be renters in single-person households.
- Householders 55 years and older were more likely to be homeowners in single-person households.
- Householders 54 years and younger were more likely to have households with 2 or more persons.

Figure 21. Households by household size, tenure, and age of householder, Oregon and Eugene, 2011

Source: American Community Survey 2011 B25116

Since 2000, the trends displayed in Figure 19 to Figure 21 have not considerably changed. Two or more person, renter-occupied households have increased their share of Eugene households by 4%, with much of the growth shown in age groups under the age of 54.
Increased ethnic and racial diversity

Eugene has grown more ethnically diverse since 1990. Table 14 shows the number of persons of Latino origin for Oregon, Lane County, and Eugene for 1990, 2000, and 2011. In 2011, Eugene’s population was 8.0% Latino, compared with 7.6% of residents of Lane County and 12.0% of residents of Oregon.

The Latino population grew faster in Eugene than in Lane County from 1990 to 2011. Eugene’s Latino population grew by 310% between 1990 and 2011. During the same period, Lane County’s Latino population grew by 293% and Oregon’ Latino population grew by 314%.

Table 14. Persons of Latino origin, Oregon, Lane County, and Eugene, 1990, 2000, and 2011

<table>
<thead>
<tr>
<th></th>
<th>Oregon</th>
<th>Lane County</th>
<th>Eugene</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Population</td>
<td>2,842,321</td>
<td>282,912</td>
<td>112,669</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>112,707</td>
<td>6,852</td>
<td>3,051</td>
</tr>
<tr>
<td>Percent Hispanic or Latino</td>
<td>4.0%</td>
<td>2.4%</td>
<td>2.7%</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Population</td>
<td>3,421,399</td>
<td>322,959</td>
<td>137,893</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>275,314</td>
<td>14,874</td>
<td>6,843</td>
</tr>
<tr>
<td>Percent Hispanic or Latino</td>
<td>8.0%</td>
<td>4.6%</td>
<td>5.0%</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Population</td>
<td>3,871,859</td>
<td>353,416</td>
<td>156,921</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>466,071</td>
<td>26,954</td>
<td>12,500</td>
</tr>
<tr>
<td>Percent Hispanic or Latino</td>
<td>12.0%</td>
<td>7.6%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Change 1990 to 2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>353,364</td>
<td>20,102</td>
<td>9,449</td>
</tr>
<tr>
<td>Percent Hispanic or Latino</td>
<td>314%</td>
<td>293%</td>
<td>310%</td>
</tr>
</tbody>
</table>

Other smaller communities in the Eugene-Springfield region had triple-digit growth in Latino populations between 1990 and 2010. The communities experiencing the largest increase in the Latino populations were Springfield (5,895 people), Cottage Grove (612 people), Junction City (410 people), and Creswell (325 people).

Eugene has also grown more racially diverse since 1990. Table 15 shows the number of white, non-white, and Hispanic or Latino persons in Oregon, Lane County, and Eugene for 1990 and 2011. In 2011, 10% of Eugene’s population was non-white, not Hispanic, up from 6% of the population in 1990. The majority of growth in racial diversity was in Asian and Native American population in Eugene.
Table 15. White, Non-White, and Hispanic or Latino population, Oregon, Lane County, and Eugene, 1990 and 2011

<table>
<thead>
<tr>
<th></th>
<th>Oregon</th>
<th>Lane County</th>
<th>Eugene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White, not Hispanic</td>
<td>2,579,732</td>
<td>265,391</td>
<td>103,364</td>
</tr>
<tr>
<td>Non-white, not Hispanic</td>
<td>149,882</td>
<td>10,669</td>
<td>6,254</td>
</tr>
<tr>
<td>Hispanic or Latino (any race)</td>
<td>112,707</td>
<td>6,852</td>
<td>3,051</td>
</tr>
<tr>
<td>Total</td>
<td>2,842,321</td>
<td>282,912</td>
<td>112,669</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White, Hispanic</td>
<td>3,016,321</td>
<td>297,112</td>
<td>128,201</td>
</tr>
<tr>
<td>Non-white, not Hispanic</td>
<td>389,467</td>
<td>29,350</td>
<td>16,220</td>
</tr>
<tr>
<td>Hispanic or Latino (any race)</td>
<td>466,071</td>
<td>26,954</td>
<td>12,500</td>
</tr>
<tr>
<td>Total</td>
<td>3,871,859</td>
<td>353,416</td>
<td>156,921</td>
</tr>
<tr>
<td>Change 1990 to 2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White, not Hispanic</td>
<td>17%</td>
<td>12%</td>
<td>24%</td>
</tr>
<tr>
<td>Non-white, not Hispanic</td>
<td>160%</td>
<td>175%</td>
<td>159%</td>
</tr>
<tr>
<td>Hispanic or Latino (any race)</td>
<td>314%</td>
<td>293%</td>
<td>310%</td>
</tr>
<tr>
<td>Total population</td>
<td>36%</td>
<td>25%</td>
<td>39%</td>
</tr>
</tbody>
</table>

Commuting trends

Figure 22 and Table 16 show where residents of Eugene worked in 2010. In Eugene, 81% of residents worked in Lane County, with 60% of Eugene residents working in Eugene and 10% working in Springfield.

Table 16. Places where residents of Eugene were employed, 2010

<table>
<thead>
<tr>
<th>Location</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane County</td>
<td>46,365</td>
<td>81%</td>
</tr>
<tr>
<td>Eugene</td>
<td>34,195</td>
<td>60%</td>
</tr>
<tr>
<td>Springfield</td>
<td>5,836</td>
<td>10%</td>
</tr>
<tr>
<td>Multnomah County</td>
<td>2,231</td>
<td>4%</td>
</tr>
<tr>
<td>Portland</td>
<td>1,955</td>
<td>3%</td>
</tr>
<tr>
<td>Washington County</td>
<td>1,435</td>
<td>3%</td>
</tr>
<tr>
<td>Marion County</td>
<td>1,376</td>
<td>2%</td>
</tr>
<tr>
<td>Linn County</td>
<td>847</td>
<td>1%</td>
</tr>
<tr>
<td>All Other Locations</td>
<td>4,865</td>
<td>9%</td>
</tr>
<tr>
<td>Total</td>
<td>57,119</td>
<td>100%</td>
</tr>
</tbody>
</table>

Figure 23 and Table 17 show where employees (i.e. referred to as “jobs” on Figure 23) of firms located in Eugene lived in 2010. In Eugene, 80%
percent of workers lived in Lane County. Of those workers, 44% percent lived in Eugene. Approximately 37% of workers lived in unincorporated Lane County.

Table 17. Places where workers in Eugene lived, 2010

<table>
<thead>
<tr>
<th>Location</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane County</td>
<td>62,435</td>
<td>80%</td>
</tr>
<tr>
<td>Eugene</td>
<td>34,195</td>
<td>44%</td>
</tr>
<tr>
<td>Springfield</td>
<td>9,011</td>
<td>12%</td>
</tr>
<tr>
<td>All Other Locations</td>
<td>15,340</td>
<td>20%</td>
</tr>
<tr>
<td>Linn County</td>
<td>2,113</td>
<td>3%</td>
</tr>
<tr>
<td>Multnomah County</td>
<td>1,985</td>
<td>3%</td>
</tr>
<tr>
<td>Washington County</td>
<td>1,558</td>
<td>2%</td>
</tr>
<tr>
<td>Other Locations</td>
<td>9,684</td>
<td>12%</td>
</tr>
<tr>
<td>Total</td>
<td>77,775</td>
<td>100%</td>
</tr>
</tbody>
</table>

Figure 23. Places where workers in Eugene lived, 2006
The implication of the data presented in this section is that the majority of Eugene’s workforce lives in Lane County, with more than half of Eugene’s workforce commuting from outside of Eugene.

Trends in student housing development

Student housing preferences can have an important impact on demand for housing in Eugene. Students at the University of Oregon accounted for about 16% of Eugene’s population in 2011, based on University enrollment information.

It is not possible to know with certainty what types of housing students occupy in Eugene because student live in a range of housing types. We know that a large share of multi-family development in Eugene that occurred between 2009 and 2012 was intended for students. And while we can make some assumptions about whether multi-family developments are likely to include students based on factors like location and building characteristics, we cannot identify exactly how much multi-family is occupied by students.

For example, a recent trend in student housing is the demand for development of dwelling units with five or more bedrooms and shared common space and kitchen facilities. These dwellings are most common in neighborhoods near the University and may have five or more students living in them.

However, these units may not be occupied exclusively by students. Private housing developers are not allowed to discriminate in renting housing based on renter age. With the exception of dormitories (which are developed by a university or college), private student housing could be occupied by anyone, whether they are a college student or not.

Students occupy other types of housing as well. Some students live in single-family dwellings, both as rentals and as homeowners. Students may live in traditional multi-family housing, such as apartments or other housing anywhere around Eugene or in Springfield.

The existing supply of housing that is occupied by students has grown substantially since 2009, with the addition of new multi-family student housing to the existing multi-family housing and single-family housing occupied by students. In addition, a substantial number of multi-family student housing buildings are under construction and expected to be completed in the next several years. Given the University of Oregon’s flat forecast for student growth and modest plans for dormitory expansion, absorption of new student housing will begin to decline, as the newest
student housing becomes available. When absorption slows sufficiently, so will development of new student housing development.

Manufactured homes

Manufactured homes are and will be an important source of affordable housing within the City of Eugene in the future. They provide a form of homeownership that can be made available to low and moderate income households. Cities are required to plan for manufactured homes—both on lots and in parks (ORS 197.475-492).

Generally, owners of manufactured homes in parks pay rent for the space. Monthly housing costs are typically lower for a homeowner in a manufactured home park, especially because property taxes levied on the value of the land are paid by the property owner rather than the manufactured homeowner. However, the value of the manufactured home generally does not appreciate in the way a conventional home would. Manufactured homeowners in parks are also subject to the mercy of the property owner in terms of rent rates and increases. It is generally not within the means of a manufactured homeowner to relocate a manufactured home to escape rent increases. Living in a park is desirable to some because it can provide a more secure community with on-site managers and amenities, such as laundry and recreation facilities.

In 1990, the City had 2,250 manufactured homes. This increased to 2,622 manufactured homes in 2010, an increase of 372 dwellings over 20 years. Between 2001 and 2012, the City issued 246 permits for manufactured homes on lots and 360 permits for new manufactured homes in parks. According to Census data, 92% of the manufactured homes in the City were owner-occupied in 2010.

OAR 197.480(4) requires cities to inventory the mobile home or manufactured dwelling parks sited in areas planned and zoned or generally used for commercial, industrial or high-density residential development. Table 18 presents the inventory of mobile and manufactured home parks within Eugene in 2012. The results show that Eugene had 29 manufactured home parks with 3,021 spaces and 47 vacant spaces. According to City of Eugene staff, three manufactured home parks closed over the 2001 to 2012 period and one subdivided.
Table 18. Inventory of Mobile/Manufactured Home Parks, Eugene, 2012

<table>
<thead>
<tr>
<th>Park Name</th>
<th>Address</th>
<th>Park Type</th>
<th>Total Spaces</th>
<th>Vacant Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Briarwood Mobile Home Park</td>
<td>4800 Barger Dr</td>
<td>55+</td>
<td>249</td>
<td>0</td>
</tr>
<tr>
<td>Brookdale Mobile Home Park</td>
<td>3868 Alban St</td>
<td>Family</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>Camellia Motel & Trailer Court</td>
<td>785 Hwy 99N</td>
<td>Family</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Camelot Mobile Village</td>
<td>3700 Babcock Ln</td>
<td>55+</td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>Churchill Meadows</td>
<td>1415 S Bertelsen Rd</td>
<td>Family</td>
<td>158</td>
<td>0</td>
</tr>
<tr>
<td>Daneland Mobile Home Park</td>
<td>1199 N Terry St</td>
<td>55+</td>
<td>277</td>
<td>5</td>
</tr>
<tr>
<td>Elmira Estates</td>
<td>500 Series Taney St</td>
<td>Family</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>Falcon Wood Village</td>
<td>1475 Green Acres Rd</td>
<td>55+</td>
<td>183</td>
<td>8</td>
</tr>
<tr>
<td>Gainsborough</td>
<td>2555 Lansdown Rd</td>
<td>55+</td>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td>Garfield Trailer Park</td>
<td>120 N Garfield</td>
<td>no data</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Hannah Del</td>
<td>Various Addresses</td>
<td>unknown</td>
<td>64</td>
<td>11</td>
</tr>
<tr>
<td>Idle Wheels</td>
<td>3900 Coburg Rd</td>
<td>55+</td>
<td>64</td>
<td>5</td>
</tr>
<tr>
<td>Lakeridge of Eugene</td>
<td>3355 N Delta Hwy</td>
<td>55+</td>
<td>192</td>
<td>0</td>
</tr>
<tr>
<td>Lakewood Mobile Home Park</td>
<td>1800 Lakewood Ct</td>
<td>55+</td>
<td>182</td>
<td>0</td>
</tr>
<tr>
<td>Lee's Mobile Home Park</td>
<td>501 Division Ave</td>
<td>55+</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>Lewis Trailer Park</td>
<td>102 Alberta Dr</td>
<td>unknown</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Mobile Towne West</td>
<td>555 N Danebo</td>
<td>55+</td>
<td>158</td>
<td>2</td>
</tr>
<tr>
<td>Parkside Mobile Home Park</td>
<td>3950 Coburg Rd</td>
<td>55+</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>Plaza West</td>
<td>1403 W 6th Ave</td>
<td>Family</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Roosevelt Acres</td>
<td>4175 Fergus Ave</td>
<td>Family</td>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td>Rosewood Mobile Home Park</td>
<td>2350 North Terry St</td>
<td>Family</td>
<td>119</td>
<td>0</td>
</tr>
<tr>
<td>Rowan Oak Park</td>
<td>2333 North Terry St</td>
<td>Family</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>Royal Oaks Mobile Park</td>
<td>4900 Royal Ave</td>
<td>Family</td>
<td>109</td>
<td>1</td>
</tr>
<tr>
<td>Royal Trailer Court</td>
<td>1445 Railroad Blvd</td>
<td>Family</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>Shady Dell Trailer Ct</td>
<td>795 Hwy 99N</td>
<td>Family</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Songbrook</td>
<td>4055 Royal Ave</td>
<td>55+</td>
<td>140</td>
<td>0</td>
</tr>
<tr>
<td>Summer Oaks Mobil Home Park</td>
<td>3220 Crescent Ave</td>
<td>55+</td>
<td>102</td>
<td>0</td>
</tr>
<tr>
<td>Trailer Haven</td>
<td>3835 River Rd</td>
<td>55+</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>Woodland Park Estates</td>
<td>1699 N Terry St</td>
<td>Family</td>
<td>399</td>
<td>0</td>
</tr>
</tbody>
</table>

Total 3,021 47

Source: Oregon Manufactured Dwelling Park Directory. http://o.hcs.state.or.us/MDCParks/ParkDirQuery.jsp
Summary of key demographic trends

Eugene’s population is growing older.

- Between 2000 and 2011, the following changes occurred:
 - The share of the population aged 45 to 64 increased by more than 4,740 people (16%).
 - The share of the population aged 65 and older increased by more than 4,369 people (26%).
 - The share of the population aged 5 to 17 decreased by about 1,000 people (-6%).

The population is forecast to continue to age.

- In Lane County, the State forecasts that the population will continue to get older between 2010 and 2040. The share of population in people aged 60 and older is forecast to increase from 17% of the population in 2000 to 27% of the population in 2040. The share of population 29 years and younger is forecast to decrease from 42% in 2000 to 36% in 2040.

Eugene has a larger share of college-aged people than Lane County as a whole.

- Eugene has a greater proportion of its population aged 20-29 years than County or State averages.
- Eugene has fewer households with children under 18 years (24%) than nearby cities, including Springfield (33%), Coburg (33%), Cottage Grove (32%), Creswell (37%), Junction City (36%), and Veneta (36%).
- Eugene has a smaller share of residents over the age of 65 (13%) compared with some communities in Lane County, notably Oakridge and Cottage Grove.

Eugene’s households are generally smaller.

- Eugene had fewer people per household, with an average household size of 2.24 people, compared to the County average of 2.35 and State average of 2.47 people per household.
- Eugene had more one and two person households (69%), compared to the State (64%) and Lane County (67%).
- Eugene had a larger share of 1-person households (34%) than the State (27%) or County (29%).
Eugene had more non-family households and fewer households with children.

- Eugene had a larger share of non-family households (48%) than the County average (40%) or State average (36%).
- Eugene had a smaller share of households with married couples with and without children (37%), than the State (48%) or County (44%).
- Eugene had a smaller share of households with children (24%) compared to Lane County (26%) and Oregon (30%).
- Eugene’s share of female householders with children and no husband (10%) was similar to the County and the State (both 10%).

Homeownership and household size are related with age.

- More than half of householders aged 45 and older were homeowners. Homeownership increases with age, until age 65.
- After age 75, homeownership decreases.
- Householders younger than 55 years and older than 75 years were more likely to be renters in single-person households.
- Householders 55 years and older were more likely to be homeowners in single-person households.

Eugene is becoming more ethnically diverse.

- Eugene’s Latino population grew by 310% between 1990 and 2011, compared with 293% growth in Lane County’s and 314% growth in the State’s Latino population during the same period.
- Other smaller communities near Eugene experienced triple-digit growth in Latino populations between 1990 and 2010. The communities experiencing the largest increase in the Latino populations were Springfield (5,895 people), Cottage Grove (612 people), Junction City (410 people), and Creswell (325 people).
- Eugene’s non-white, not Hispanic population grew to 10% in 2011, up from 6% in 1990.

Latino residents become homeowners at a younger age and have larger households.

- In 2010, 70% of Latino Oregonians were under 35 compared to 42% of non-Hispanic residents.
- 49% of Latino households aged 25 to 44 years were homeowners, compared with 24% of non-Hispanic households.
The average size of a Latino household in 2010 in Eugene was 3.00 people, compared with 2.24 people in all households. Household sizes in Lane County were larger: 2.42 for all households and 3.18 for Latino households.

Eugene is part of a complex, interconnected regional housing market.

Commuting is typical throughout the region: 80% of Eugene’s workforce lives in Lane County, but over half do not reside in the City of Eugene.

Since 2000, single-family housing types dominated total housing starts in the selected cities within Lane County.

New housing development in the 2000-2012 period was predominately single-family housing types. In fact, only 31% of all units for which building permits were issued in selected cities in Lane County were for multi-family housing types.

The rate of multi-family permits issued at selected cities in Lane County increased in 2005 to 36% of permits issued compared to one-quarter or fewer of permits issued between 2000 and 2004. Between 2006 and 2008, multi-family permits accounted for between one-quarter and one-third of permits issued. 2012 was the only year in the period in which multi-family permits accounted for over half (70%) of total permits issued.

Multi-family permits accounted for 39% of permits issued in Eugene over the 2001 to 2012 period. The share of multi-family permits issued in Eugene ranged from 7% of permits issued in 2003 to 83% of permits issued in 2012.

Over the long-term, housing types are trending towards larger units on smaller lots.

Between 1990 and 2011 the median size of new single-family dwellings increased 17%, from 1,905 sq. ft. to 2,227 sq. ft. nationally and grew by 11% in the western region from 1,985 sq. ft. to 2,199 sq. ft. Between 1990 and 2011, the percentage of lots under 7,000 sq. ft. increased from 27% of lots to 33% of lots.

Starting with the beginning of the 2007 recession, the trend towards larger units slowed. Between 2007 and 2011, the median size of new single-family units decreased by 2% nationally to 2,227 square feet. The western region had a 4% decrease in median size of new single-family units, to a median of 2,199 square feet.
3.4 Step 4: Determine the types of housing that are likely to be affordable to the projected population based on household income

Step four of the housing needs assessment results in an estimate of need for housing by income and housing type. This requires some estimate of the income distribution of future households in the community. ECO developed these estimates based on estimated incomes of households that live in Eugene. The analysis is set out in this section of the HNA. The key finding from this analysis is that an affordability gap exists for lower income households. As a result, Eugene’s needed density is higher than the achieved density because Eugene’s needed mix is for more affordable housing types (less single-family detached and more of other housing types).

3.4.1 Income and affordability of housing

This section summarizes regional and local income and housing cost trends. Income is one of the key determinants in housing choice and households’ ability to afford housing. A review of historical income and housing price trends provides insights into the local and regional housing markets.
Table 19 shows a set of inflation adjusted income indicators for Eugene and Lane County. The results paint a mixed picture, but generally suggest that income (by most measures) increased during the 1990s, and decreased between 1999 and 2010. Incomes in Eugene decreased more over the 21-year period than the County average.

The data show that the percentage of persons below the poverty level increased in Eugene (by 10%) and Lane County (by 7%) between 1999 and 2010.

Table 19. Inflation-adjusted income indicators (in 2011 dollars), Eugene and Lane County, 1989, 1999, and 2010

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eugene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median HH Income</td>
<td>$41,843</td>
<td>$46,573</td>
<td>$37,339</td>
<td>$4,730</td>
<td>(4,504)</td>
</tr>
<tr>
<td>Median Family Income</td>
<td>$56,332</td>
<td>$63,042</td>
<td>$55,063</td>
<td>$6,710</td>
<td>(1,269)</td>
</tr>
<tr>
<td>Per Capita Income</td>
<td>$22,903</td>
<td>$27,691</td>
<td>$22,625</td>
<td>$4,787</td>
<td>(278)</td>
</tr>
<tr>
<td>% Persons Below Poverty Level</td>
<td>17%</td>
<td>17%</td>
<td>27%</td>
<td>0%</td>
<td>10%</td>
</tr>
<tr>
<td>Lane County</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median HH Income</td>
<td>$41,677</td>
<td>$47,992</td>
<td>$40,584</td>
<td>$6,315</td>
<td>(1,093)</td>
</tr>
<tr>
<td>Median Family Income</td>
<td>$50,740</td>
<td>$58,604</td>
<td>$53,086</td>
<td>$7,864</td>
<td>2,346</td>
</tr>
<tr>
<td>Per Capita Income</td>
<td>$20,733</td>
<td>$25,568</td>
<td>$22,187</td>
<td>$4,835</td>
<td>1,454</td>
</tr>
<tr>
<td>% Persons Below Poverty Level</td>
<td>14%</td>
<td>14%</td>
<td>21%</td>
<td>0%</td>
<td>7%</td>
</tr>
</tbody>
</table>

Notes: All dollar amounts in 2011 dollars. 1989 income converted to 2011 dollars using 1.65 inflation factor. 1999 income converted to 2011 dollars using 1.30 inflation factor.
A typical standard used to determine housing affordability is that a household should pay no more than a certain percentage of household income for housing, including payments and interest or rent, utilities, and insurance. HUD guidelines indicate that households paying more than 30% of their income on housing experience “cost burden” and households paying more than 50% of their income on housing experience “severe cost burden.” Using cost burden as an indicator is consistent with the Goal 10 requirement of providing housing that is affordable to all households in a community.

Figure 24 shows housing costs as a percent of income by tenure for Eugene households in 2011. According to the American Community Survey, 50% of Eugene households experienced cost burden in 2011. The rate was much higher for Eugene renters (64%) than for homeowners (33%).

Figure 24. Comparisons of cost burden for Eugene, 2011

<table>
<thead>
<tr>
<th></th>
<th>Cost burden for all households</th>
<th>Cost burden for all Eugene households</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of households</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>70%</td>
<td>70%</td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

- Oregon 58% 42% 50%
- Lane County 56% 44% 50%
- Eugene 50% 50% 50%

Source: American Community Survey 2011 B25070 B25091

In comparison, about 61,000 households in Lane County — 44% — were cost burdened in 2011, with 61% of renter households cost burdened and 31% of owner households cost burdened. The State average of cost burden was 42%, with 55% of renter households cost burdened and 33% of owner households cost burdened.

While cost burden is a common measure of housing affordability, it does have some limitations. Two important limitations are:

- A household is defined as cost burdened if the housing costs exceed 30% of their income, regardless of actual income. The remaining 70% of income is expected to be spent on non-discretionary expenses, such as food or medical care, and on
discretionary expenses. Households with higher income may be able to pay more than 30% of their income on housing without impacting the household’s ability to pay for necessary non-discretionary expenses.

- Cost burden compares income to housing costs and does not account for accumulated wealth. As a result, the estimate of how much a household can afford to pay for housing does not include the impact of accumulated wealth on a household’s ability to pay for housing. For example, a household with retired people may have relatively low income but may have accumulated assets (such as profits from selling another house) that allow them to purchase a house that would be considered unaffordable to them based on the cost burden indicator.

Cost burden is only one indicator of housing affordability. Another way of exploring the issue of financial need is to review wage rates and housing affordability. Table 20 shows an illustration of affordable housing wage and rent gap for households in Lane County at different percentages of median family income (MFI). The data are for a typical family of four. The results indicate that a household must earn $15.44 an hour to afford a two-bedroom unit according to HUD’s market rate rent estimate.

Table 20. Illustration of affordable housing wage and rent gap by HUD income categories for a two-bedroom rental unit, Lane County, 2012

<table>
<thead>
<tr>
<th>Value</th>
<th>Minimum Wage</th>
<th>30% MFI</th>
<th>50% MFI</th>
<th>80% MFI</th>
<th>100% MFI</th>
<th>120% MFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Hours</td>
<td>2088</td>
<td>2088</td>
<td>2088</td>
<td>2088</td>
<td>2088</td>
<td>2088</td>
</tr>
<tr>
<td>Derived Hourly Wage</td>
<td>$8.80</td>
<td>$8.51</td>
<td>$14.18</td>
<td>$22.68</td>
<td>$29.35</td>
<td>$34.02</td>
</tr>
<tr>
<td>Annual Wage At Minimum Wage</td>
<td>$18,374</td>
<td>$17,760</td>
<td>$29,600</td>
<td>$47,360</td>
<td>$59,200</td>
<td>$71,040</td>
</tr>
<tr>
<td>Annual Affordable Rent</td>
<td>$5,512</td>
<td>$5,328</td>
<td>$8,880</td>
<td>$14,208</td>
<td>$17,760</td>
<td>$21,312</td>
</tr>
<tr>
<td>Monthly Affordable Rent</td>
<td>$459</td>
<td>$444</td>
<td>$740</td>
<td>$1,184</td>
<td>$1,480</td>
<td>$1,776</td>
</tr>
<tr>
<td>HUD Fair Market Rent (2 Bedroom)</td>
<td>$806</td>
<td>$806</td>
<td>$806</td>
<td>$806</td>
<td>$806</td>
<td>$806</td>
</tr>
<tr>
<td>Is HUD Fair Market Rent Higher Than The Monthly Affordable Rent?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rent Paid Monthly OVER 30% of Income</td>
<td>$347</td>
<td>$362</td>
<td>$66</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Rent Paid Annually OVER 30% of Income</td>
<td>$4,160</td>
<td>$4,344</td>
<td>$792</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Percentage of Income Paid OVER 30% of Income for Rent</td>
<td>23%</td>
<td>24%</td>
<td>3%</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Total Spent on Housing</td>
<td>53%</td>
<td>54%</td>
<td>33%</td>
<td>20%</td>
<td>16%</td>
<td>14%</td>
</tr>
<tr>
<td>For this area what would the "Affordable Housing Wage" be?</td>
<td>$15.44</td>
<td>$15.44</td>
<td>$15.44</td>
<td>$15.44</td>
<td>$15.44</td>
<td>$15.44</td>
</tr>
<tr>
<td>The Affordable Housing Wage Gap IS:</td>
<td>$6.64</td>
<td>$6.93</td>
<td>$1.26</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

MFI: Median family income, FMR: Fair market rent
Table 21 shows a rough estimate of affordable housing cost and units by income levels for Eugene in 2012 based on Census data about tenure, household income, the value of owner occupied housing in Eugene, and rental costs in Eugene. Several points should be kept in mind when interpreting this data:

- Affordable monthly housing costs and estimate of affordable purchase prices are based on HUD income standards and assume that a household will not spend more than 30% of household income on housing costs. Some households pay more than 30% of household income on housing costs, generally because they are unable to find more affordable housing or because wealthier households are able to pay a larger share of income for housing costs.

- HUD’s affordability guidelines for Fair Market Rent are based on median family income and provide a rough estimate of financial need. These guidelines may mask other barriers to affordable housing such as move-in costs, competition for housing from higher income households, and availability of suitable units. They also ignore other important factors such as accumulated assets, purchasing housing as an investment, and the effect of down payments and interest rates on housing affordability.

- Households compete for housing in the marketplace. In other words, affordable housing units are not necessarily available to low income households. For example, if an area has a total of 50 dwelling units that are affordable to households earning 30% of median family income, 50% of those units may already be occupied by households that earn more than 30% of median family income.

The data in Table 21 indicate that in 2012:

- More than one-quarter of Eugene households could not afford a studio apartment according to HUD’s estimate of $525 as fair market rent;

- More than 40% of Eugene households could not afford a two-bedroom apartment at HUD’s fair market rent level of $806;

- A household earning median family income ($59,200) could afford a home valued up to about $148,000.
The conclusion based on the data presented in Table 21 is that in 2012 Eugene had a significant deficit of about 13,000 affordable housing units for households that earn less than $25,000 annually. The next section examines changes in housing cost between 2000 and 2011.

3.4.2 Changes in housing cost

According to the Federal Housing Finance Agency (FHFA), the average sales price of a single-family home in the Eugene-Springfield MSA increased 122% between 2000 and 2012. The greatest increases in average housing price occurred between the third quarter of 2004 and the fourth quarter of 2006, with an increase of 159% over that period. The average sales price decreased by 96% between second quarter 2008 and third quarter 2012, with nearly all of that decrease occurring from late 2008 to late 2011. Average sales prices in the State of Oregon followed the same patterns over the 2000 to 2012 period but with larger price increases in 2012 than Eugene.29

To quantify these housing price trends, ECO analyzed data from four sources: (1) Multiple Listings Service; (2) U.S. Census, and (3) rental data from Duncan & Brown, a Eugene-based real estate analysis firm that conducted rent surveys for the Metropolitan Region until 2005.

Housing values

Figure 25 shows change in median housing value in Lane County and Eugene for the 1990 to 2000 period and 2000 to 2011 period. One caveat about this data, which is from the U.S. Census: housing values are estimated by the person responding to the Census, reflecting the homeowner’s perception of the value of the house, not the sales value of the house.

Housing values doubled between 1990 and 2000 in Eugene from nearly $73,000 in 1990 in Eugene to $145,000 in 2000, increasing by more than $72,000 or 99%. Lane County’s housing prices increased by $70,500 or 108% over the same period.

Between 2000 and 2011, Eugene’s housing prices increased from nearly $145,000 in 2000 in Eugene to $236,600 in 2011, increasing by more than $91,600 or 63%. Lane County’s housing prices increased by $76,900 or 57% over the same period.

Figure 25. Median housing value, owner-occupied housing units, Lane County and Eugene, 1990 to 2011

Figure 26 shows a comparison of housing value for owner-occupied housing units in Oregon, Lane County, and Eugene in 2011. Eugene had a larger share of housing valued between $200,000 and $400,000 (48%), compared to the County (41%) and State (43%). Eugene had a smaller share of housing valued less than $200,000 (11%) than the State (40%) or County (15%). Eugene and Lane County had a smaller share of housing valued more than $400,000 (15% and 13%, respectively) than the State (17%).

Figure 26. Housing value, owner-occupied housing units, Oregon, Lane County, and Eugene, 2011

Source: American Community Survey, 2011; Table B25075
Table 22 and Figure 27 show median sales price for Eugene areas the same years. The table and figure show:

- Housing prices increased by 20% or more in all areas between 2001 and 2011.
- The largest increases in median sales price were in East Eugene, with an increase of 54% ($86,000) and Ferry Street Bridge, with an increase of 44% ($68,500).
- The smallest increases in median sales price were in Danebo, with an increase of 20% ($23,700), West Eugene, with an increase of 21% ($24,400), and River Road and Santa Clara, each with an increase of 23%.
- Housing prices decreased in all areas by at least 10% between 2007 and 2011. Areas with lower sales prices had the largest price declines, in dollars and as a percent change over the five-year period.
- The largest decreases in median sales prices between 2007 and 2011 were in Danebo (-33%; -$70,300) and West Eugene (-31%; - $62,600).
- North Gilham, Ferry Street Bridge, and East Eugene saw the smallest declines in median sales prices from 2007 to 2011.

Table 22. Average and median sales price, single-family dwellings, areas in Eugene, 2001, 2007, and 2011

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Sales</td>
<td>Dollar</td>
<td>Percent Change</td>
<td>Number of Sales</td>
<td>Dollar</td>
</tr>
<tr>
<td>North Gilham</td>
<td>$170,000</td>
<td>$299,500</td>
<td>$270,000</td>
<td>1,509 $100,000 59%</td>
<td>664 $-29,500 -10%</td>
</tr>
<tr>
<td>Ferry Street Bridge</td>
<td>$156,500</td>
<td>$274,900</td>
<td>$225,000</td>
<td>3,391 $68,500 44%</td>
<td>1,297 $-49,900 -18%</td>
</tr>
<tr>
<td>East Eugene</td>
<td>$160,000</td>
<td>$297,500</td>
<td>$246,000</td>
<td>3,334 $86,000 54%</td>
<td>1,222 $-51,500 -17%</td>
</tr>
<tr>
<td>Southwest Eugene</td>
<td>$160,000</td>
<td>$278,000</td>
<td>$225,000</td>
<td>4,843 $55,000 41%</td>
<td>1,787 $-53,000 -19%</td>
</tr>
<tr>
<td>West Eugene</td>
<td>$115,300</td>
<td>$202,300</td>
<td>$139,700</td>
<td>1,539 $24,400 21%</td>
<td>609 $-62,600 -31%</td>
</tr>
<tr>
<td>Danebo</td>
<td>$119,000</td>
<td>$213,000</td>
<td>$142,700</td>
<td>4,621 $23,700 20%</td>
<td>1,723 $-70,300 -33%</td>
</tr>
<tr>
<td>River Road</td>
<td>$128,000</td>
<td>$219,000</td>
<td>$157,500</td>
<td>1,557 $29,500 23%</td>
<td>544 $-61,500 -28%</td>
</tr>
<tr>
<td>Santa Clara</td>
<td>$155,000</td>
<td>$255,000</td>
<td>$189,900</td>
<td>3,476 $34,900 23%</td>
<td>1,287 $-65,100 -26%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Sales</td>
<td>Dollar</td>
<td>Percent Change</td>
<td>Number of Sales</td>
<td>Dollar</td>
</tr>
<tr>
<td>North Gilham</td>
<td>$195,900</td>
<td>$335,100</td>
<td>$289,100</td>
<td>1,509 $93,200 48%</td>
<td>664 $-46,000 -14%</td>
</tr>
<tr>
<td>Ferry Street Bridge</td>
<td>$179,400</td>
<td>$307,300</td>
<td>$247,600</td>
<td>3,391 $68,200 38%</td>
<td>1,297 $-59,700 -19%</td>
</tr>
<tr>
<td>East Eugene</td>
<td>$185,800</td>
<td>$340,200</td>
<td>$299,100</td>
<td>3,334 $113,300 61%</td>
<td>1,222 $-41,100 -12%</td>
</tr>
<tr>
<td>Southwest Eugene</td>
<td>$188,800</td>
<td>$322,000</td>
<td>$261,900</td>
<td>4,843 $73,100 39%</td>
<td>1,787 $-60,100 -19%</td>
</tr>
<tr>
<td>West Eugene</td>
<td>$125,700</td>
<td>$217,900</td>
<td>$152,700</td>
<td>1,539 $27,000 21%</td>
<td>609 $-65,200 -30%</td>
</tr>
<tr>
<td>Danebo</td>
<td>$119,300</td>
<td>$209,500</td>
<td>$136,900</td>
<td>4,621 $17,600 15%</td>
<td>1,723 $-72,600 -35%</td>
</tr>
<tr>
<td>River Road</td>
<td>$130,400</td>
<td>$227,800</td>
<td>$160,200</td>
<td>1,557 $29,600 23%</td>
<td>544 $-67,600 -30%</td>
</tr>
<tr>
<td>Santa Clara</td>
<td>$159,800</td>
<td>$277,700</td>
<td>$199,600</td>
<td>3,476 $39,800 25%</td>
<td>1,287 $-78,100 -28%</td>
</tr>
</tbody>
</table>

Source: Multiple Listing Service (MLS), Analysis by ECONorthwest
Figure 27. Median sales price, single-family dwellings, areas in Eugene, 2001, 2007, and 2011

Source: Multiple Listing Service (MLS), Analysis by ECONorthwest
3.4.3 Housing rental costs

About half of Eugene’s households are renters. Figure 28 shows median contract rent\(^{30}\) for Lane County and Eugene in 2000 and 2005 through 2011. Rent increased during this ten-year period by $151 (27%) in Eugene, compared to $155 (29%) in Lane County.

Figure 28. Median contract rent, Lane County and Eugene, 2000 to 2011

\(^{30}\) The U.S. Census defines contract rent as “The monthly rent agreed to or contracted for, regardless of any furnishings, utilities, fees, meals, or services that may be included.”
Figure 29 shows a comparison of gross rent31 for renter-occupied housing units in Oregon, Lane County, and Eugene in 2011. Lane County had a larger share of rental units costing less than $600 per month (19%) than Eugene or Oregon (both 17%). Eugene, Lane County, and the State had similar shares of rental units costing between $600 and $1,000 per month (about 48%).

Figure 29. Gross rent, renter-occupied housing units, Oregon, Lane County, and Eugene, 2011

Source: American Community Survey 2011; Table B25063

31 The U.S. Census defines gross rent as “The amount of the contract rent plus the estimated average monthly cost of utilities (electricity, gas, and water and sewer) and fuels (oil, coal, kerosene, wood, etc.) if these are paid for by the renter (or paid for the renter by someone else).”
Figure 30 shows the median contract rent for Lane County cities. The highest median contract rents from the 2007-2011 American Community Survey were in Eugene, Creswell, and Springfield. The lowest median contract rents were in Oakridge and Junction City. Median contract rent in Eugene was $712.

Figure 30. Median contract rent, Lane County cities, 2007-2011

Source: American Community Survey 2007-2011 B25058
Figure 31 shows average monthly cost of rental units in Eugene for the 2000 to 2012 period. Rental units were separated into two categories: (1) units built prior to 1988 and (2) units built since 1988 based on the Duncan and Brown Apartment Rent Report.

Rents increased based on the number of bedrooms. Rents ranged from $396 for a studio unit in 2000 to $1,102 for a three-bedroom unit in 2012. Rents for units with a similar number of bedrooms were higher for newer units. For instance, the average rental cost in 2012 of a two-bedroom unit built prior to 1988 was $785 compared to $914 for a two-bedroom unit built since 1988, a difference of $129 per month.

Over the twelve-year period, rents increased by between $113 and $258 per month. Monthly costs increased by the greatest amount for older three bedroom apartments, rising by $258 per month or 37%.

Figure 31. Average rental monthly costs by number of bedrooms, nominal dollars, Eugene, 2000 to 2012

![Bar chart showing average rental monthly costs by number of bedrooms, nominal dollars, Eugene, 2000 to 2012.](image)

Source: Duncan & Brown Apartment Rent Report, 2000 to 2012; Calculations by ECONorthwest

Note: Bdrm is bedrooms

There were too few Studios built since 1998 in the survey to include in the summary.
3.4.4 Housing Cost Summary

The analysis of housing value, sales prices, and rents presented in this section leads us to the conclusion:

- **Housing sales prices increased faster than rental rates.** Over the ten-year period between 2001 and 2011 average sales price increased by 35%, compared to a 23% change in average rental costs. Actual changes in sales price varied substantially, with large increases in housing price between 2001 and 2007 and nearly as large decreases in sales price between 2007 and 2011.

- **The housing sales market has cooled from its peak.** Eugene’s single-family housing starts have declined since 2006. The overall number of permits for new single-family residences issued region-wide remained remarkably stable until 2007, when they declined dramatically.

- **Rental costs increased.** Rental costs increased in Eugene by one-quarter to one-third over the 2000 to 2012 period. Rental costs increased for all types of units.

- **Rental costs in Eugene are higher than in nearby cities.** Rents were between 10% and 25% higher than smaller cities near Eugene (e.g., Springfield, Veneta, or Cottage Grove).

The implications of the data shown in the prior sections is that ownership costs increased much faster than rents and incomes. Table 23 underscores this trend for Eugene.

- Between 1989 and 1999, incomes increased about 41% while median owner value increased 109%. Rents increased 46%—nearly the same as incomes.

- Since 1999, the data show housing costs have increased faster than incomes, with a 4% increase in median household income, compared to a 33% increase in median rents and 56% increase in median owner value.

Finally, the results show that the median owner value was 2.9 times median household income in 1989—a figure that increased to 6.3 by 2010.
Table 23. Comparison of income, housing value, and gross rent, Eugene, 1989, 1999, and 2010

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Median HH Income</td>
<td>$25,369</td>
<td>$35,850</td>
<td>$37,339</td>
<td>41%</td>
<td>4%</td>
</tr>
<tr>
<td>Median Family Income</td>
<td>$34,153</td>
<td>$48,527</td>
<td>$55,063</td>
<td>42%</td>
<td>13%</td>
</tr>
<tr>
<td>Median Owner Value</td>
<td>$72,800</td>
<td>$152,000</td>
<td>$236,600</td>
<td>109%</td>
<td>56%</td>
</tr>
<tr>
<td>Median Gross Rent</td>
<td>$425</td>
<td>$621</td>
<td>$826</td>
<td>46%</td>
<td>33%</td>
</tr>
<tr>
<td>Percent of Units Owned</td>
<td>51%</td>
<td>52%</td>
<td>45%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio of Housing Value to Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median HH Income</td>
<td>2.9</td>
<td>4.2</td>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Family Income</td>
<td>2.1</td>
<td>3.1</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 24 compares income, housing value, and gross rent for Lane County in 1989, 1999, and 2010. Between 1989 and 2010, the ratio of housing value/household income grew from 2.6 to 5.2.

Table 24. Comparison of income, housing value, and gross rent, Lane County, 1989, 1999, and 2010

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Median HH Income</td>
<td>$25,268</td>
<td>$36,942</td>
<td>$40,584</td>
<td>46%</td>
<td>10%</td>
</tr>
<tr>
<td>Median Family Income</td>
<td>$30,763</td>
<td>$45,111</td>
<td>$53,086</td>
<td>47%</td>
<td>18%</td>
</tr>
<tr>
<td>Median Owner Value</td>
<td>$65,500</td>
<td>$141,000</td>
<td>$212,900</td>
<td>115%</td>
<td>51%</td>
</tr>
<tr>
<td>Median Gross Rent</td>
<td>$418</td>
<td>$604</td>
<td>$819</td>
<td>44%</td>
<td>36%</td>
</tr>
<tr>
<td>Percent of Units Owned</td>
<td>61%</td>
<td>62%</td>
<td>56%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio of Housing Value to Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median HH Income</td>
<td>2.6</td>
<td>3.8</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Family Income</td>
<td>2.1</td>
<td>3.1</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In summary, the data indicate that homeownership is increasingly expensive in Eugene and that the cost of homeownership is prohibitive for low- and moderate-income households. The purchase price of housing, however, decreased as a result of the current housing market downturn and has continued to do so through 2011. Data about housing sales for Eugene in 2012 suggest that housing prices are stabilizing and beginning to increase, although at a slower rate than the State average.

The data indicate that homeownership rates in Eugene and Lane County have held constant, despite the rapid increase in sales prices during the mid-2000’s. This is probably due in large part to the broader array of financing options available to households during the mid-2000’s, many of which are not currently available to households today. The future availability of these financing options is unclear, as the local and national housing markets recover from the downturn and recession that started at the end of 2007.
3.5 Implications of changes in demographic trends for future housing need

Sections 3.2, 3.3 and 3.4 presented information about factors that affect housing choice: demographic and economic trends, as well as housing affordability issues. This section assembles that information into an assessment of the specific factors and their potential effect on Eugene’s housing needs over the planning period.

In the context of housing markets, past and current housing conditions demonstrate the intersection of the forces of housing supply and demand at a price of housing. Housing demand is derived from the characteristics of households that create or are correlated with preferences for different types of housing, and the ability to pay (the ability to exercise those preferences in a housing market by purchasing or renting housing; in other words, income or wealth).

One way to forecast housing demand is with detailed analysis of demographic and socioeconomic variables. If one could measure housing demand for each household, one might find that every household has a unique set of preferences for housing. But no city-wide housing analysis can expect to build from the preferences of individual households. Most housing market analyses that get to this level of detail describe categories of households on the assumption that households in each category will share characteristics that will make their preferences similar.

The main demographic and socioeconomic variables that may affect housing choice include: age of householder, household composition (e.g., married couple with children or single-person household), size of household, ethnicity, race, household income, or accumulated wealth (e.g., real estate or stocks). The literature about housing markets identify the following household characteristics as those most strongly correlated with housing choice: age of the householder, size of the household, and income.33

32 Not only could one not measure the preferences of all existing households (now and in the future); one could not know what specific households would be migrating to the region.

33 The research in this memorandum is based on numerous articles and sources of information about housing, including:

- **Age of householder** is the age of the person identified (in the Census) as the head of household. Households make different housing choices at different stages of life. For example, a person may choose to live in an apartment when they are just out of high school or college but if they have children, they may choose to live in a single-family detached house.

- **Size of household** is the number of people living in the household. Younger and older people are more likely to live in single-person households and people in their middle years are more likely to live in multiple person households (often with children).

- **Income** is the household income. Income is probably the most important determinant of housing choice. Income is strongly related to the type of housing a household chooses (e.g., single-family detached, duplex, or a building with more than five units) and to household tenure (e.g., rent or own). A review of census data that analyzes housing types by income in most cities will show that as income increases, households are more likely to choose single-family detached housing types. Consistent with the

The State of the Nation’s Housing 2010. The Joint Center for Housing Studies of Harvard University. 2010.

The Case for Multifamily Housing. Urban Land Institute. 2003

ECONorthwest’s analysis of 2000 Census Public Use Microdata Sample (PUMS) data for Oregon and counties within Oregon.

U.S. Census data for 1990, 2000, and American Community Survey data.
relationship between income and housing type, higher income households are also more likely to own than rent.

3.5.1 Trends affecting housing choice

The national demographic trends that will affect housing demand across the U.S., as well as Oregon and Eugene, are:

- **Aging of the baby boomers.** By 2035, the youngest baby boomers will be over 70 years old. By 2035, people 65 years and older are projected to account for about 21% of the U.S. population, up from about 12% of the population in 2000.

- **Growth in echo boomers.** Echo boomers are a large group of people (Generation Y) born from the late-1970’s to early 2000’s, with the largest concentration born between 1982 and 1995. By 2035, echo boomers will all be older than 40 years old, with the oldest echo boomers over 50 years old. The echo boomers will form households and enter their prime earnings years during the 20-year planning period.

- **Growth of immigrants.** One of the fastest growing groups in the U.S. will be immigrants—especially Latino immigrants. By 2035, first and second-generation Latinos are projected to account for about 23% of the U.S. population, an increase from about 13% of the U.S. population in 2000. Growth in the Latino population will be the result of natural increase (more births than deaths) and immigration from other countries.

- **Increase in diversity.** The Hispanic and Latino population is one of the fastest growing ethnic groups in the U.S, as noted above. In 2011, 10% of Eugene’s population was non-white, not Hispanic, up from 6% of the population in 1990. The majority of growth in racial diversity was in Asian and Native American population in Eugene.

- **Other trends.** Eugene’s housing market will be affected by other demographic trends. For example, the composition of households is changing, in part as a result of the aging of the population, growth of immigrants, and increase in diversity. Traditional household composition (e.g., households with children and married couples) are becoming less common and non-traditional household composition (e.g., single-family households and non-family households) are becoming more common.

Table 25 through Table 27 describe the changes in these demographic and socioeconomic trends and their potential effect on housing choice in Eugene over the next 20 years. These tables discuss the characteristics of
the householder, which is the person identified (by the household) as the head of household on the Census.
Table 25. Baby boomers (Age in 2012: 46 to 65 years old; Age in 2035: 66 to 85 years old)

<table>
<thead>
<tr>
<th>Demographic trends</th>
<th>Baby boomers are the fastest growing segment of Lane County’s population.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>People over 65 years are forecasted to grow from 13% of Lane County’s population in 2000 to 21% in 2030.</td>
</tr>
<tr>
<td></td>
<td>Growth in people over 65 years old in Lane County will result in growth of nearly 47,000 people in this age group in Lane County or 44% of population growth over the 2000 to 2030 period.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age of household head</th>
<th>Eugene’s older householders are more likely to own their home.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Homeownership peaks for householders 45 to 74. More than 70% of householders 45 to 74 in Eugene are homeowners.</td>
</tr>
<tr>
<td></td>
<td>A majority of people over 45 years old express an interest in remaining in their home or in their community as long as possible.34</td>
</tr>
<tr>
<td></td>
<td>Homeownership begins to decrease for households over 75 years old. About 66% of householders over 75 in Eugene are homeowners.</td>
</tr>
<tr>
<td></td>
<td>About 67% of people over 65 years live in a single-family house (either detached or attached), with 54% of people over 75 years living in a single-family house.</td>
</tr>
<tr>
<td></td>
<td>About 20% of people over 65 live in a multi-family unit.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Household size and composition</th>
<th>Household size decreases with age after age 65 in Eugene.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>About 56% of households 65 to 74 have two or more persons.</td>
</tr>
<tr>
<td></td>
<td>About 43% of households 75 years and older have two or more persons.</td>
</tr>
<tr>
<td></td>
<td>More than one-quarter of households 65 years and older are single-person households.</td>
</tr>
<tr>
<td></td>
<td>Growth in households 65 years and older will result in growth in single-person households.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Household income</th>
<th>Eugene’s household income peaks around age 55.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Household income decreases after age 65. About 60% of Eugene’s households over 65 had income of less than $50,000, compared with 45% of households 45 to 64.</td>
</tr>
<tr>
<td></td>
<td>Households with householders over 65 years have a lower than average household income, at about 80% of Eugene’s median household income.</td>
</tr>
<tr>
<td></td>
<td>Lower income does not necessarily result in greater problems with housing affordability or lower homeownership rates for people over 65 years because:</td>
</tr>
<tr>
<td></td>
<td>Nearly three-quarters of the lowest income householders (making less than $20,000 in the year 2000) over 65 were homeowners.</td>
</tr>
<tr>
<td></td>
<td>Some householders over 65 have paid off their mortgage. For households who have paid off their mortgage, lower income does not necessarily result in lower disposable income or affect their ability to continue to own their home.</td>
</tr>
<tr>
<td></td>
<td>Older households may have more accumulated wealth, which could include assets like the value of their house or investments.</td>
</tr>
</tbody>
</table>

34 Multiple studies show that people over age 45 prefer to stay in their home or community as long as possible, including multiple surveys by AARP (see http://www.aarp.org/research/surveys). The AARP survey Home and Community Preferences of the 45+ Population shows that 85% of respondees want to stay in their current residence and community as long as possible.
<table>
<thead>
<tr>
<th>Potential effect on housing demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>The major impact of the aging of the baby boomers on demand for new housing will be through demand for housing types specific to seniors, such as assisted living facilities. Baby boomers will make a range of housing choices in Eugene:</td>
</tr>
<tr>
<td>• Many will choose to remain in their houses as long as they are able.</td>
</tr>
<tr>
<td>• As their health fails, some will choose to move to group housing, such as assisted living facilities or nursing homes.</td>
</tr>
<tr>
<td>• Some may downsize to smaller single-family homes (detached and attached) or multi-family units. These will be a mixture of owner and renter units.</td>
</tr>
<tr>
<td>• Some may choose to move to retirement or age-restricted communities.</td>
</tr>
</tbody>
</table>

35 The AARP survey *Approaching 65: A Survey of Baby Boomers Turning 65 Years Old* of people 65 years old shows that about 15% of responding households are planning to downsize to smaller homes over the next few years.
Table 26. Echo Boomers (Age in 2012: 15 to 28 years old; Age in 2035: 35 to 48 years old)

<table>
<thead>
<tr>
<th>Demographic trends</th>
<th>Echo boomers are one of the fastest growing segments of Lane County's population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• By 2030, the State projects that there will be nearly 140,000 people 25 to 49 years in Lane County, up from nearly 115,000 people in 2000.</td>
</tr>
<tr>
<td></td>
<td>• There will be an increase of about 25,000 people between the ages of 25 to 49 years in Lane County. This group will account for 24% of total population growth over the 2000 to 2030 period.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age of household head</th>
<th>Housing preferences shift for householders as they get older.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Under 25 years old: 95% were renters, and nearly three-quarters live in a multi-family unit.</td>
</tr>
<tr>
<td></td>
<td>• 25 to 34 years old: 71% were renters and 44% lived in a multi-family unit.</td>
</tr>
<tr>
<td></td>
<td>• 35 to 44 years old: 45% were renters and 25% lived in a multi-family unit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Household size and composition</th>
<th>Household size increases slightly until age 44.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• More than 70% of households between age 15 and 44 years have two or more persons.</td>
</tr>
<tr>
<td></td>
<td>• About 30% of households between 15 to 24 years are single-person households, compared with 22% of households 35 to 44 years.</td>
</tr>
<tr>
<td></td>
<td>• Seventy-seven percent of households with two or more persons younger than age 34 are renters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Household income</th>
<th>Younger households have lower income and homeownership rates on average.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• About two-thirds of households under 25 years (which includes college students) had an income of less than $25,000. About 56% of households between 25 and 44 had income of less than $50,000.</td>
</tr>
<tr>
<td></td>
<td>• Younger households generally had less accumulated wealth, such as housing equity.</td>
</tr>
<tr>
<td></td>
<td>• Households between 25 and 44 years had higher than average income, at about 115% of Eugene’s median household income.</td>
</tr>
<tr>
<td></td>
<td>• Higher incomes generally correlate with homeownership. More than 80% of younger households with income more than $45,000 (in 2000) were homeowners, with more than three-quarters owning single-family detached dwellings.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect of trends on household choice</th>
<th>Growth in echo boomers will result in increased demand for all housing types in Eugene.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recent research hypothesizes that echo boomers may make different housing choices than their parents as a result of the on-going recession and housing crisis. They suggest that echo boomers will prefer to rent and will prefer to live in multi-family housing, especially in large cities. Other studies suggest that the</td>
</tr>
</tbody>
</table>

36 Examples of such research include Housing in America: The New Decade from the Urban Land Institute or The Rise of the Non-Traditional Household from Multifamily Trends.
majority of echo boomers’ housing preference is to own a single-family home. Our conclusion based on review of recent research is that it seems unlikely that the majority of echo boomers will make fundamentally different housing choices than previous generations as they age and have families.

- Echo boomers are likely to choose to rent when they are under 30 years. They will most frequently rent a multi-family unit. This choice may be made from preference but is likely to be necessitated by lower income.
- As they establish their careers, their incomes increase, and they form families, it seems likely that a large share of echo boomers in Eugene will choose to live in an owner-occupied single family house. Some echo boomers may prefer to rent or own a multi-family unit in or near Eugene’s downtown.
- Recent articles suggest that echo boomers who prefer single-family units may prefer (or only be able to afford) smaller single-family units.
- Eugene is a suburban market, with urban amenities that may appeal to echo boomers who prefer to live in a smaller city. Eugene itself does not have distant suburbs but nearby smaller cities have filled the role of distant suburbs for Eugene. Echo boomers may choose to live in Eugene’s suburban neighborhoods, rather than in nearby smaller cities, if housing in Eugene is affordable.

37 A national survey of Echo Boomers in 2010 shows that: two-thirds of Echo Boomers expect to own their home by 2015, that nearly two-thirds expect to live in a single-family home, one-quarter expects to live in an apartment or condominium. These results are from the Urban Land Institute study Generation Y: America’s New Housing Wave.
Table 27. Growth of immigrants and change in ethnic composition38

| Demographic trends | Immigrants are a growing segment of Eugene’s population. At the same time, Eugene is becoming more ethnically diverse, with growth in the Hispanic and Latino population (both from immigration and from current residents in Eugene).
| | • About 73% of Lane County’s population growth between 1990 and 2009 was the result of in-migration from other parts of the U.S. and from outside of the country into Lane County.
| | • Eugene became more ethnically diverse, with Hispanic and Latino population growing by more than 310% between 1990 and 2011, an addition of 9,449 Latino residents.
| | • Eugene became more racially diverse between 1990 and 2011, with significant increase of the population of Asian and Pacific Islanders, from nearly 4,900 people in 1990 to more than 6,200 people in 2011.
| | • Nationally, about half of Latino population growth is expected to be the result of immigration (people moving to the U.S.) and half from growth of second-generation immigrants (people born in the U.S. to first generation immigrants).

| Age of household head | Latino and Asian populations in Eugene have a different age structure than Eugene’s overall population:
| | • In 2010, median age for Latinos (24 years) and Asians (25 years) was lower with the median age for the total population (34 years).
| | • In 2010, the average age nationally for first generation Latino immigrants (41 years) and Asian immigrants (44 years) was higher than the national average age of 37 years.
| | • However, the average age of second generation Latino immigrants (28 years) and Asian immigrants (30 years), was lower than the U.S. average of 37 years.

| Household size and composition | Latino households in Eugene are more likely to have children and to have more persons per household and less likely to be homeowners.
| | • Nearly half of Latino households in Eugene had children under 18 years, compared with about one-third of white non-Hispanic households.
| | • About 17% of Latino households had more than one occupant per room, compared with 2% of all households in Eugene.
| | • Latino households in Eugene live in single-family houses (detached and attached) with about the same frequency as non-Hispanic households. About two-thirds of Latino households live in single-family dwellings.
| | • About one-quarter of Latino households are homeowners, compared with an ownership rate of a little more than 50% for all households in Eugene.
| | • In 2010, 49% of Oregon’s Latino households aged 25 to 44 years were homeowners, compared with 24% of non-Hispanic households.
| | • Nationally, about 43% of first generation Latino households own their homes and 50% of second generation Latino households own their homes.

38 This table contains information from the U.S. Census 2010 and 2011 American Community Survey. Information at the national (U.S.) level about Hispanics in this section is from the Pew Research Center report \textit{Second-Generation Americans: A Portrait of the Adult Children of Immigrants}.
Household Income

<table>
<thead>
<tr>
<th>Latino households in Eugene have lower than average income.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Latino households in Eugene have lower than average income, with household income at 97% of Eugene’s median ($39,640) and family income at 94% of Eugene’s median ($57,526)</td>
</tr>
<tr>
<td>- First generation Latino households generally have lower income, in part as a result of their relatively young age and as result of generally lower educational achievement.</td>
</tr>
<tr>
<td>- Second generation Latinos generally have higher incomes and educational attainment than first generation Latinos but their incomes and educational attainment are still lower than the U.S. average.</td>
</tr>
<tr>
<td>- In 2012, the national median household income for first generation Latino households was $34,600, compared to $48,400 for second generation Latino households, compared with the U.S. average of $58,200.</td>
</tr>
</tbody>
</table>

Potential Effect on Housing Demand

<table>
<thead>
<tr>
<th>Growth in immigrants may result in increased demand for multi-family and single-family housing in Eugene.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Affordability is likely to be a more common problem for immigrants, especially recent immigrants, because immigrants have lower income on average.</td>
</tr>
<tr>
<td>- Immigrants associated with the University of Oregon, either as students or faculty/staff, may choose to rent a home if they are in Eugene temporarily and may choose to purchase a home if they will be in Eugene over a long period of time.</td>
</tr>
<tr>
<td>- First generation Latino immigrants are likely to choose multi-family housing, in part because that is what they can afford.</td>
</tr>
<tr>
<td>- Homeownership increases the longer immigrants stay in the U.S. Longer-term first generation immigrants and second-generation immigrants may become home owners, depending on their ability to afford owning a home.</td>
</tr>
<tr>
<td>- Homeownership increases for second-generation immigrant households.</td>
</tr>
</tbody>
</table>
3.5.2 Conclusions about how demographic trends may affect housing choice

Identifying future housing need based on expected demographic changes requires making qualitative assessments of the future housing market. Demographic changes are likely to affect housing in Eugene’s housing market in the following ways over the next 20 years:

- **On average, future housing will look a lot like past housing.** This assumption underlies any trend forecast, and allows some quantification of the composition of demand for new housing. As an approximation, the next five years, and maybe the first 10 years, of residential growth will look a lot like the last decade.

- **If the future differs from the past, it is likely to move in the direction (on average) of smaller units and more diverse housing types.** Most of the evidence suggests that the bulk of the change will be in the direction of smaller average house and lot sizes for single-family housing. An aging population, increasing housing costs, and other variables are factors that support the conclusion that the future housing supply will include smaller and less expensive units and a broader array of housing choices.

- **No amount of analysis is likely to make the long-run future any more certain: the purpose of the housing forecasting in this study is to get an approximate idea about the long run so policy choices can be made today.** It is accepted among economic forecasters that any economic forecast more than three (or at most five) years out is highly speculative. At one year, the forecast is protected from being disastrously wrong by the sheer inertia of the economic machine. But a variety of factors or events could cause long-run growth forecasts to be substantially different.
3.6 Steps 5 and 6: Estimate the number of additional needed units by structure type and determine needed density

Step five of the housing needs assessment results in an estimate of need for housing by income and housing type. Step six of the housing needs assessment is a determination of needed housing density by plan designation. We grouped these steps together because the housing mix influences average housing density within the entire city. For example, a city with a comparatively large amount of single-family housing will have a lower average density than a city with a comparatively large amount of multi-family housing.

The language of Goal 10 and ORS 197.296 refers to housing need: it requires communities to provide needed housing types for households at all income levels. Goal 10's broad definition of need covers all households—from those with no home to those with second homes. Eugene is required to make a local Housing Needs Projection that determines the needed mix of housing types and densities that are: (1) consistent with the financial capabilities of present and future area residents of all income levels during the planning period, (2) consistent with adopted housing standards, (3) consistent with requirements of Goal 10, OAR 660-008, and ORS 197.296, and (4) consistent with Goal 14 requirements.

To make this determination, we use the information presented to this point in the analysis. We use the following definitions to distinguish between housing need and housing market demand (as discussed in Section 1.1.1), which we believe to be consistent with definitions in state policy:

- **Housing need** can be defined broadly or narrowly. The broad definition is based on the mandate of Goal 10 that requires communities to plan for housing that meets the needs of households at all income levels. Goal 10, though it addresses housing, emphasizes the impacts on the households that need that housing. Since everyone needs shelter, Goal 10 requires that a jurisdiction address, at some level, how every household will be affected by the housing market over a 20-year period. In short, housing need is addressed through the local Housing Needs Projection.

- **Housing market demand** is what households demonstrate they are willing to purchase in the market place. Growth in population means growth in the number of households and implies an increase
in demand for housing units. That demand is met primarily by the construction of new housing units by the private sector based on its judgments about the types of housing that will be absorbed by the market. ORS 197.296 includes a market demand component, called a buildable land needs analysis, which must consider the density and mix of housing developed over the previous five years or since their most recent periodic review, whichever is greater. In concept, what got built in that five-year period was the effective demand for new housing: it is the local equilibrium of demand factors, supply factors, and price.

This section briefly reviews the actual housing mix and density achieved and discusses the needed housing mix and density of housing over the next 20 years based on the information presented in prior sections of the housing needs analysis.

3.6.1 Actual mix and density

Figure 32 summarizes two measures of Eugene’s housing mix: the mix of all of Eugene’s existing housing stock in 2011 (Table 5) and the mix of housing built between 2001 and 2012 (Table 4).

Figure 32. Summary of housing mix, Eugene’s housing stock and housing developed between 2001 and 2012

Source: Data from American Community Survey 2011 B25024 and City of Eugene Planning Department, 2012; Analysis by ECONorthwest
Table 7 shows the density of housing developed between 2001 and 2012 by type of housing:

- Single-family detached: 5.4 dwelling units per net acre
- Single-family attached: 20.5 dwelling units per net acre
- Two to four units: 10.4 dwelling units per net acre
- Five or more units: 24.4 dwelling units per net acre
- Average for all housing types: 7.5 dwelling units per net acre

Table 7 also shows housing density by residential plan designation, for housing developed between 2001 and 2012:

- Low Density Residential: 5.4 dwelling units per net acre
- Medium Density Residential: 13.4 dwelling units per net acre
- High Density Residential: 32.6 dwelling units per net acre

3.6.2 Needed mix and density

Cities are required to determine the average density and mix of needed housing over the next 20-years (ORS 197.296(7)). The determination of needed density and mix should consider the following factors that may affect future housing need:

- The number, density and average mix of housing types of urban residential development that have actually occurred;
- Trends in density and average mix of housing types of urban residential development;
- Demographic and population trends;
- Economic trends and cycles; and
- The number, density and average mix of housing types that have occurred on the buildable lands.

The baseline housing needs analysis used Eugene’s actual housing density (average of 7.2 dwelling units per net acre) and actual housing mix in 2007 when this analysis started (61% single-family housing types and 39% multi-family housing types) for housing built in residential plan designations.

ECO concludes that Eugene’s needed future housing mix for the 2012 to 2032 period is different than Eugene’s actual housing mix, based on the following factors (as specified in ORS 197.296(5)(a)):
Eugene has a need for housing of all types, including single-family detached, single-family attached, structures with 2 to 4 units, and structures with 5 or more units.

Lane County and Eugene are growing, with most growth resulting from in-migration.

- The County grew by 71,288 people between 1990 and 2012. About two-thirds of this growth occurred in Eugene, which grew by 45,666 people over the 22-year period. Seventy-five percent of population growth in Lane County was the result of in-migration to the County.

- Eugene’s adopted forecast projects that population inside the Eugene UGB will grow by about 33,778 people between 2012 and 2032.

- The demographics of Eugene’s population by 2032 and their corresponding housing needs will be different than they are today. The population will be, on average, older and more ethnically diverse, with the following effects on needed housing:
 - Older households will be downsizing and demanding specialized housing products. While the majority of Eugene’s older population may prefer to remain in their home as long as possible (as discussed in Table 25), some older households will choose to downsize into a smaller single-family dwelling or into a multi-family dwelling. Demand will increase for the range of senior housing, from adult retirement to assisted living to nursing homes.
 - Echo Boomers who live in Eugene over the long-term will demand a variety of housing options. The Echo Boomers are the largest demographic group in the U.S., larger than the Baby Boomers. Echo Boomers were between 15 to 28 years old in 2010 and will be 35 to 48 years old by 2035. When they are younger, they will need more affordable housing, such as multi-family housing types. Echo Boomers who live in Eugene will include students at the University of Oregon who are living in Eugene for a few years and those who live in Eugene over the long run. Students at the University of Oregon will generally need rental housing geared towards students. As they age and form families, some Echo Boomer households will become homeowners of single-family detached housing (if they can afford to) and some may prefer to live in multi-family housing (as owners or renters).
The growth in Latino households and need for affordable housing will increase demand for lower-cost housing, such as small single-family or multi-family housing. Latino households are expected to account for a large share of population growth over the next two decades. First and second generation Latino households generally have lower than average household income and larger than average households. Although homeownership rates are lower for Latino households, those Latino households who become homeowners do so at an earlier age. The growth in Latino households and need for affordable housing will increase demand for lower-cost housing, such as small single-family or multi-family housing.

- **The economy is changing, which could influence demand for certain housing types.** Lane County and Eugene’s economy have grown. Between 1990 and 2011, Lane County added about 22,200 jobs and the average wage increased by 88% (about $17,000). While the economy and the housing market are continuing to grow slowly after the 2007-2009 recession, Eugene can expect to experience one to two complete economic cycles (from faster growth to little or no growth) over the planning period.

- **Future housing demand will be driven by in-migration and changes in age-demographics.** It is likely that households that move to Eugene in the future will have characteristics similar to those that moved to Eugene in the recent past (since 2001). New households and existing households are likely to undergo similar changes in age-demographics. The Office of Economic Analysis projects that Lane County’s share of people over 60 years will increase from 17% in 2000 to 26% in 2030, adding nearly 56,000 people 60 years and older over the thirty year period.

- **Changes in Eugene’s household composition will affect the types of housing needed.** The composition of Eugene’s households has changed over the last two decades, with household size decreasing slightly, from 2.30 persons per household in 1990 to 2.24 persons per household in 2010, a change of 2.6% over the 20-year period. Single-person households became more common, with 31% of households in one-person households in 1990 and 33% in 2010.

- **Eugene’s housing became less affordable for renting and owning over the last decade.** Some indicators that illustrate this decrease in affordability include:
 - Fifty percent of Eugene households were cost burdened in 2011. The rate was much higher for renters (64%) than for
homeowners (33%). In comparison, 44% of Lane County’s households and 42% of State households were cost burdened in 2011.

- In 2012, Eugene had a deficit of about 13,000 dwelling units that would be affordable to households earning $25,000 or less based on the U.S. Department of Housing and Urban Development’s (HUD) affordability guidelines.

- More than one-quarter of Eugene households could not afford a studio apartment at HUD’s fair market rent level of $525, and 40% of households could not afford a two-bedroom apartment at HUD’s fair market rent level of $806.

- A household earning median family income ($59,200) could afford a home valued up to about $148,000. About one-third of Eugene’s owner-occupied dwellings were affordable to a household earning median family income.

- Average sales prices increased by 15% to 61% over the 2001 to 2011 period in Eugene, increasing by between $17,600 (in Danebo) to $113,300 (in East Eugene) per unit over the eleven year period.

- Between 1999 and 2010, growth in homeownership costs outpaced growth in income. Median owner value increased by 56% between 1999 and 2011, while median household income increased by 4% and median family income increased by 13%.

- Between 1999 and 2011, growth in renter costs outpaced growth in income. Median gross rent increased by 33% between 1999 and 2010, while median household income increased by 4% and median family income increased by 13%.

- Eugene’s housing market has produced a mixture of single-family and multi-family housing types since 2000, at a wide-range of densities. The following describes the types and characteristics of housing that Eugene’s market produced over the last decade or more:

 - The share of single-family housing types changed from 60% in 1990 to 56% in 2011. The share of multi-family housing increased from 40% in 1990 to 44% in 2011. Single-family

39 Table 5 shows that multifamily includes the following housing mix in 2011: 8% single-family attached, 11% structures with two to four units, and 25% structures with five or more units.
housing accounted for about 60% of permits issued for the 2001 to 2012 period.

- Eugene provided approximately 80% of the region’s multi-family housing between 2000 and 2012.

- Fifty percent of housing in Eugene was owner-occupied in 2010, down from 51% in 1990. Eugene’s homeownership rate was lower than the County average of 60% or the State average of 62% in 2011.

- The average net density for residential development in residential plan designations between 2001 and 2012 was 7.5 units per net acre. The net density in the Low Density Residential designation (LDR) was 5.4 dwelling units per net acre, the Medium Density Residential designation (MDR) had an average of 13.4 dwelling units per net acre, and the High Density Residential designation (HDR) had an average of 32.6 dwelling units per net acre.

- Average net density for single-family detached housing increased from an average of about 5.0 dwelling units per net acre built during the 1980’s to an average of about 5.4 dwelling units per net acre built during the 2001 to 2012 period, a density increase of about 8%.

- Average lot sizes for single-family detached housing decreased from an average of about 8,700 square feet built during the 1980’s to an average of about 7,800 square feet built during the 2000’s, a decrease in lot size of about 10%.

The implications from the preceding analysis are clear that the needed housing mix for new housing is different than the actual housing mix.

In short, the affordability gap described above (e.g., cost burden for renters or owners, as well as the affordability gap for households making 50% less than the median income) and the expected demographic changes imply that Eugene needs to shift towards higher densities and more multi-family housing types, which are typically more affordable because land costs are lower and service costs for multi-family are spread out over multiple units. While the City will not be able to fill the housing affordability solely through land use policy, the residential land use strategy will need to create opportunities for developing additional affordable housing. The implications of Eugene’s housing affordability gap and expected demographic changes for needed housing mix are:
• The City will need to provide opportunities for additional affordable housing; this will require planning for more multi-family dwellings of every type.

• The City will need to provide opportunities for development of a wider range of housing types, especially more multi-family housing types and more compact single-family detached housing.

• The City can, to some degree, influence housing costs by increasing the share of higher density housing production, which will reduce the overall land need.\(^{40}\)

• The City can affect single-family housing costs by developing policies that allow or require building single-family units on smaller lots.\(^{41}\)

Table 28 shows Eugene’s needed dwelling units by structure type, starting with the forecast of 15,105 units from Table 10. Based on the above, as shown on Table 28, this analysis assumes Eugene’s needed mix is 55% single-family and 45% multi-family housing types.

\(^{40}\) There are limits to the amount that increasing housing density can increase housing affordability. Housing that requires less land is generally more affordable. The affordability of multi-family housing depends, in part, on the construction techniques and materials used to build the structure. For example, multi-family structures that are less than four or five stories tall are generally wood-framed structures and are generally less costly than multi-family housing taller than four or five stories, which are generally steel-framed structures.

\(^{41}\) With respect to single-family housing, land accounts for a higher percentage of the overall cost, but does not account for the majority of costs. For example, a lot valued at $50,000 might have a home worth $250,000; the land accounts for 20% of the total value of the dwelling. A recent study by the Lincoln Institute of Land Policy indicates that land accounted for 26.8% of total home value in Oregon during the first quarter of 2010 (http://www.lincolninst.edu/subcenters/land-values/metro-area-land-prices.asp)
Table 28. Estimate of needed dwelling units by structure type, Eugene, 2012-2032

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate of Housing Units (2012-2032)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total new dwelling units (2012-2032)</td>
<td>15,105</td>
</tr>
<tr>
<td>Dwelling units by structure type</td>
<td></td>
</tr>
<tr>
<td>Single-family detached</td>
<td></td>
</tr>
<tr>
<td>Percent single-family detached DU</td>
<td>55%</td>
</tr>
<tr>
<td>equals Total new single-family DU</td>
<td>8,308</td>
</tr>
<tr>
<td>Single-family attached</td>
<td></td>
</tr>
<tr>
<td>Percent single-family attached DU</td>
<td>8%</td>
</tr>
<tr>
<td>Total new single-family attached DU</td>
<td>1,208</td>
</tr>
<tr>
<td>Two to four units</td>
<td></td>
</tr>
<tr>
<td>Percent apartment DU</td>
<td>12%</td>
</tr>
<tr>
<td>Total new two to four DU</td>
<td>1,813</td>
</tr>
<tr>
<td>Five or more units</td>
<td></td>
</tr>
<tr>
<td>Percent apartment DU</td>
<td>25%</td>
</tr>
<tr>
<td>Total new five or more DU</td>
<td>3,776</td>
</tr>
<tr>
<td>Totals</td>
<td>equals Total new dwelling units (2012-2032)</td>
</tr>
</tbody>
</table>

Source: ECONorthwest
Table 29 shows tenure by structure type from the 2011 Census. Table 29 shows an estimate of needed housing by structure type and tenure for the 2012-2032 planning period, using the forecast in Table 28. The housing needs analysis assumes that homeownership rates will not change in the future, remaining at 50% owner-occupied and 50% renter occupied.

Table 29. Baseline estimate of needed dwelling units by type and tenure, Eugene, 2012-2032

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Owner-Occupied</th>
<th></th>
<th>Renter-Occupied</th>
<th></th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New DU by Type</td>
<td>Percent by Type</td>
<td>New DU by Type</td>
<td>Percent by Type</td>
<td>New DU by Type</td>
<td>Percent of Total DU</td>
</tr>
<tr>
<td>Single-family detached</td>
<td>6,646</td>
<td>80%</td>
<td>1,662</td>
<td>20%</td>
<td>8,308</td>
<td>55%</td>
</tr>
<tr>
<td>Single-family attached</td>
<td>362</td>
<td>30%</td>
<td>846</td>
<td>70%</td>
<td>1,208</td>
<td>8%</td>
</tr>
<tr>
<td>Two to four units</td>
<td>181</td>
<td>10%</td>
<td>1,632</td>
<td>90%</td>
<td>1,813</td>
<td>12%</td>
</tr>
<tr>
<td>Five or more units</td>
<td>378</td>
<td>10%</td>
<td>3,398</td>
<td>90%</td>
<td>3,776</td>
<td>25%</td>
</tr>
<tr>
<td>Total dwelling units</td>
<td>7,567</td>
<td>50%</td>
<td>7,538</td>
<td>50%</td>
<td>15,105</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: ECONorthwest
The analysis (Table 10) indicates that Eugene needs 15,105 new dwelling units for the 2012-2032 period. The next step in estimating units by structure type is to evaluate income as it relates to housing affordability. Table 30 shows an estimate of needed dwelling units by income level for the 2012-2032 period.

The analysis uses market segments consistent with HUD income level categories. The analysis shows that about 38% of households in Eugene could be considered high or upper-middle income in 2012 and that about 39% of the housing need in the 2012-2032 period will derive from households in these categories. The analysis also shows that 62% of Eugene’s households could be considered lower-middle, low, or very low income in 2012 and that about 61% of the housing need in the 2012-2032 period will derive from households in these categories.

Table 30 also shows the type of unit by tenure financially attainable within each of the income categories. The analysis shows that for the lower middle, low and very low income households, the housing will be primary used (existing housing stock) and more likely to be renter-occupied.

Table 30. Estimate of needed dwelling units by income level, Eugene, 2012-2032

<table>
<thead>
<tr>
<th>Market Segment by Income</th>
<th>Income range</th>
<th>Number of Households</th>
<th>Percent of Households</th>
<th>Financially Attainable Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (120% or more of MFI)</td>
<td>$71,040 or more</td>
<td>4,019</td>
<td>27%</td>
<td>All housing types; higher prices</td>
</tr>
<tr>
<td>Upper Middle (80%-120% of MFI)</td>
<td>$71,040 to $47,360</td>
<td>1,750</td>
<td>12%</td>
<td>All housing types; lower values</td>
</tr>
<tr>
<td>Lower Middle (50%-80% of MFI)</td>
<td>$47,360 to $29,600</td>
<td>2,944</td>
<td>19%</td>
<td>Manufactured on lots; single-family attached; duplexes</td>
</tr>
<tr>
<td>Low (30%-50% or less of MFI)</td>
<td>$29,600 to $17,760</td>
<td>2,440</td>
<td>16%</td>
<td>Manufactured in parks</td>
</tr>
<tr>
<td>Very Low (Less than 30% of MFI)</td>
<td>Less than $17,760</td>
<td>3,952</td>
<td>26%</td>
<td>None</td>
</tr>
</tbody>
</table>

Source: Analysis by ECONorthwest;
Number of households by income range from the 2008 American Community Survey, Table B19001
Income range based on HUD’s 2008 Median Family Income of $59,200.
Table 31 provides an allocation of housing units by Eugene’s three residential plan designations and commercial plan designations. Dwelling units were allocated to plan designations based, in part, on recent development trends (2001 to 2008) within each plan designation and on the type of development allowed in each plan destination. For instance, single-family detached primarily occurred on Low Density Residential land, with a smaller portion occurring on Medium Density Residential and essentially none occurring on High Density Residential.

The land use code generally allows all housing types in all residential zones, but the type of housing that is developed in each plan designation is significantly impacted by the minimum and maximum density requirements (and development standards) of the implementing zone. We considered these code provisions in the allocations of housing to plan designations.

Based on the housing needs analysis, dwellings have been allocated by plan designation and type:

- Fifty-eight percent of needed dwelling units will locate in the Low Density Residential designation, which typically develops with single-family detached, secondary dwelling units, manufactured homes and 2-4 unit plexes. This designation also allows single-family attached and multi-family dwellings (limited by density maximums).

- Twenty-two percent of needed dwellings will locate in the Medium Density Residential designation, which typically develops with single-family attached, 2-4 unit plexes and multi-family dwellings. This designation also allows single-family detached and manufactured home parks (limited by density minimums).

- Twenty percent of needed dwelling units will locate in High Density or Mixed-Use Residential designations, which typically develops with single-family attached and multi-family. This designation also allows single-family detached and manufactured homes and 2-4 unit plexes (limited by density minimums).

- Manufactured units in parks will locate in the Low Density plan designation.
Table 31. Allocation of new housing units by plan designation, Eugene, 2012-2032

<table>
<thead>
<tr>
<th>Housing Type</th>
<th>Plan Designation</th>
<th>Total (DU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low Density Residential</td>
<td>Medium Density Residential</td>
</tr>
<tr>
<td>Percent of Units</td>
<td>97%</td>
<td>3%</td>
</tr>
<tr>
<td>Single-family detached</td>
<td>17%</td>
<td>53%</td>
</tr>
<tr>
<td>Single-family attached</td>
<td>17%</td>
<td>53%</td>
</tr>
<tr>
<td>Two to four units</td>
<td>27%</td>
<td>68%</td>
</tr>
<tr>
<td>Five or more units</td>
<td>0%</td>
<td>30%</td>
</tr>
<tr>
<td>Number of Units</td>
<td>8,059</td>
<td>249</td>
</tr>
<tr>
<td>Single-family detached</td>
<td>205</td>
<td>640</td>
</tr>
<tr>
<td>Two to four units</td>
<td>490</td>
<td>1,233</td>
</tr>
<tr>
<td>Five or more units</td>
<td>0</td>
<td>1,133</td>
</tr>
<tr>
<td>Total</td>
<td>8,754</td>
<td>3,255</td>
</tr>
<tr>
<td>Percent of Units</td>
<td>58%</td>
<td>22%</td>
</tr>
</tbody>
</table>

Source: ECONorthwest
Note: Single-family attached dwellings and structures with two to four units in commercial designations are assumed to develop at the density assumptions used for medium density plan designations. Structures with five or more units in commercial designations are assumed to develop at the densities assumed for high density plan designations.

In addition to estimating needed mix, Eugene is required to estimate the needed density for housing produced over the 2012 to 2032 period. Table 7 and Table 8 present the actual density achieved over the 2001 to 2012 period. To re-cap, Table 8 shows the following average development density by Comprehensive Plan Designation:

- **Low Density Residential** averaged 5.4 dwelling units per net acre.
- **Medium Density Residential** averaged 13.4 dwelling units per net acre.
- **High Density Residential** averaged 32.6 dwelling units per net acre.

With Eugene’s needed housing mix (55% single-family detached and 45% multi-family), Eugene’s residential density would be 7.8 dwelling units per net acre. The change in housing mix results in an increase in the average development density of 0.5 dwelling units per net acre for new development, a 7% increase.

Shifting the housing mix would provide opportunities for development of a larger share of multi-family housing. As a result, the City would meet its identified need for development of more multi-family housing at urban densities and additional housing affordable to households at all income
levels. This analysis finds that the City’s needed housing density is 7.8 dwelling units per net acre, based on the need for opportunities to build additional housing affordable to households at all income levels.
4 Residential land sufficiency

This Chapter presents an evaluation of the sufficiency of residential land within Eugene’s UGB to accommodate expected residential growth over the 2012 to 2032 period. It is organized into the following sections. Sections 4.1 through 4.3 of this Chapter provide an estimate of Eugene’s residential development capacity on vacant and partially vacant land, assuming no changes are made to the City’s 2012 land use regulations and land use designations. This estimate of development capacity is sometimes referred to as Eugene’s “baseline” capacity. Section 4.4 then compares that baseline capacity with the estimate of Eugene’s 20-year housing needs from Chapter 3. The conclusion reached at the end of this Chapter is that Eugene’s baseline capacity is sufficient (a surplus) to meet the 20-year need for land designated Medium-Density Residential (“MDR”), but there is a modest deficit of land designated Low-Density (“LDR”) and High Density Residential (“HDR”).

4.1 Residential development capacity on vacant and partially vacant land

This section explains how Eugene estimated residential development capacity. The estimate of residential capacity starts with the determination of acres of vacant residential land, partially vacant residential land, and residential land with redevelopment potential from the Buildable Lands Inventory (BLI).

It uses information from Chapter 3 of this HNA about the density of residential development in Eugene to convert from acres of vacant (and partially vacant) land to capacity for residential development in dwelling units.

The result of the capacity analysis is an estimate of the number of dwelling units that can be accommodated on Eugene’s vacant and partially vacant residential land and on land with redevelopment potential. This estimate of capacity is compared to need for new housing (Table 31) to determine whether Eugene can accommodate the need for new housing through 2032.

42 A residential land deficit identified in an HNA must be addressed by the City through reasonable efficiency measures to increase the capacity above the baseline capacity identified in the HNA (e.g., changes to its land use regulations or land use designations), through a UGB expansion to add the needed land, or through a combination of these actions.
There are two ways to determine whether Eugene has enough residential capacity to accommodate housing growth through 2032: (1) housing need can be converted from dwelling units into acres, or (2) residential land supply can be converted from acres into dwelling units. Eugene’s analysis uses the second approach: it estimates the capacity of Eugene’s residential land supply to accommodate new housing units by converting the land supply into a number of potential dwelling units. This analysis, sometimes called a “capacity analysis,” is preferable for Eugene because it allows the City to account for the differing development capacity of different areas within its UGB.

Factors such as elevation, slope, and parcel size can affect the capacity of Eugene’s land supply to accommodate new units of housing. To take these factors into account, Eugene’s capacity analysis utilizes three different methods for determining the capacity of land. These methods are described in Section 4.1.1.

The capacity analysis uses different density assumptions for land depending on its land use designation (LDR, MDR, or HDR), elevation (below or above 900’), slope (less than or more than 5%), and lot size (acres located on lots of less than 1 acre, 1-5 acres, or 5 or more acres).

Although this level of specificity makes Eugene’s capacity analysis more complicated than is legally required, it produces more accurate results than a capacity analysis that uses a single method and density assumption to determine the capacity of all vacant and partially vacant land.

43 For purposes of Eugene’s analysis, the term “capacity analysis” refers to the estimate of the number of new dwelling units land is likely to accommodate over the 20-year planning period. It is not the maximum number of dwellings that could possibly be built based on density limits imposed by plan designation or zoning.

44 As discussed in more detail, below, the City imposes more regulation in areas of higher elevation and slope that contribute to lower residential densities in those areas. The areas are still buildable; they simply have less capacity because portions of many sites may have steep grades or are subject to Goal 5 protection measures.

45 The buildable lands model results in a sub-tax lot level analysis. This means that in the geospatial model, a lot or subarea is not identical with a tax lot. Instead, it is a subarea of a tax lot that shares certain characteristics. For instance, if a lot has more than one plan designation, barring any other differing characteristics the tax lot would be split into subareas by the number of plan designations on the site. So the term “lot” as used here refers to the sub-tax lot acre size.
4.1.1 Methods used to estimate residential development capacity of vacant and partially vacant land

This section describes the three methods used to estimate residential development capacity of vacant and partially vacant land. The capacity estimate considers the following key characteristics of vacant and partially vacant land:

- **Comprehensive Plan Designation** for LDR, MDR, and HDR land.
- **Lot size** for vacant and partially vacant land. The lot sizes considered are lots smaller than 1 acre, lots of 1 to 5 acres in size, and lots larger than 5 acres. Lot size is considered because smaller lots will require less land set aside for rights-of-way and larger lots will require more land for rights-of-way. Need for land for rights-of-way is accounted for in differing density assumptions, as described in the sections below.
- **Slope** of land. The slope categories are less than 5% slope and greater than 5% slope (5% to 30% slope). The slope is considered because development on lands with steeper slopes, especially in LDR, generally occurs at lower densities compared to flat land (e.g. below 5% slope).
- **Elevation** of the land. The elevations include below 900 feet and above 900 feet (at or above 900 feet). Elevation is considered because Eugene’s development code regulates development above and below 900 feet differently in some areas of the city.

The methods used in Eugene’s capacity analysis are the same for vacant and partially vacant land except as noted:

- **Capacity Method 1.** This method estimates the capacity on LDR land of all sizes that is flat and below 900 feet, and all MDR and HDR Land.
- **Capacity Method 2.** This method estimates the capacity on LDR parcels 1 to 5 acres and larger than 5 acres on land with a slope above 5% or an elevation above 900 feet.
- **Capacity Method 3.** This method estimates the capacity on LDR parcels smaller than 1 acre on land with a slope above 5% or an elevation above 900 feet. This method also estimates capacity on LDR partially vacant land parcels 1 to 5 acres with a slope above 5%.
Capacity Method 1: Relatively Flat LDR and All MDR & HDR

Capacity Method 1 was used to determine the capacity of most of Eugene’s current residential land supply. It was used to estimate capacity of LDR land that is relatively flat and all MDR and HDR. Table 32 shows the categories of land included in Capacity Method 1 in green highlight:

- **LDR** land that is vacant or partially vacant in all lot sizes\(^{46}\) with a slope of 5% or less and below 900 feet in elevation. In parcels of less than one acre, the analysis applies only to vacant land.
- **MDR** land that is vacant or partially vacant in all lot sizes\(^{47}\) at all slopes and elevations.
- **HDR** land that is vacant or partially vacant in all lot sizes\(^{48}\) at all slopes and elevations.

Table 32. Capacity method by category of land, with land included in Capacity Method 1 shown in green highlight

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900’</td>
<td>> 900’</td>
<td>< 900’</td>
</tr>
<tr>
<td>< 5%</td>
<td>< 5%</td>
<td>25%</td>
<td>< 5%</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>1</td>
<td>2</td>
<td>2 (V)</td>
</tr>
<tr>
<td>> 900’</td>
<td>> 900’</td>
<td>> 900’</td>
<td></td>
</tr>
</tbody>
</table>

*In parcels < 1 acre in LDR and HDR, this analysis applies to vacant land only. In parcels < 1 acre in MDR, this analysis applies to vacant land < 1 acre and partially vacant parcels 0.5-< 1 acres.

Table 32. Capacity method by category of land, with land included in Capacity Method 1 shown in green highlight

Source: 2012 Residential Land Supply, City of Eugene

Capacity Method 1 is straightforward, multiplying the acres of buildable land by the density assumption:

Buildable Land (ac) * Density (du/ac) = Capacity (du)

For example:

100 acres of buildable land * 6 du/ac = a capacity of 600 dwelling units

For this method, the City uses the BLI’s buildable land acreage (“Vacant” acres and “Partially Vacant” acres), which excludes constrained land.\(^{49}\)

\(^{46}\) For parcels < 1 acre in LDR, this analysis applies to vacant land only.

\(^{47}\) For parcels < 1 acre in MDR this analysis applies to vacant land and partially vacant parcels 0.5-1 acres.

\(^{48}\) For parcels < 1 acre in LDR, this analysis applies to vacant land only.

\(^{49}\) As explained in Section 4.1.1, land that is committed, protected, fully developed, or above 30% slope was considered “constrained” and, therefore, not included in the acreage used under Capacity Method #1. The remaining land is referred to as “buildable land.”
Capacity Method 1 uses the following information:

- **All buildable land** that falls within a category of land (e.g., parcels smaller than 1 acre with a slope of less than 5% and an elevation below 900 feet).

- **Net Density** assumptions about the average density that land will develop at. The density assumption begins with identifying a preliminary average residential density that would occur on those acres if all the buildable land was dedicated to housing units. The method does not require site specific density assumptions; rather it applies average densities to all buildable land in a category to derive a dwelling unit estimate.

- **Gross Density** assumptions to account for buildable land that will be used for right-of-way to serve the new housing, creating a gross density assumption. It is clear that future streets and sidewalks will consume some of the land in the categories listed above. The net density assumption was adjusted to a gross density assumption based on the amounts of land used for rights-of-way in existing housing, referred to as a net-to-gross conversion. Accounting for land needed for rights-of-way (e.g., streets and sidewalks) in this way results in a density assumption that ensures the city is not over-estimating the housing capacity of its current residential land supply by recognizing that some land will be used for rights-of-way.

- The **capacity estimate** (in dwelling units) results from multiplying acres of buildable land by the gross density assumption. Capacity Method 1 results in an estimate of the total number of units that can reasonably expect to develop on the acres of buildable land.

50 OAR 660-024-0010(6) provides the following definition: “Net Buildable Acre” consists of 43,560 square feet of residentially designated buildable land after excluding future rights-of-way for streets and roads. Thus, a gross acre is an acre that includes future rights-of-way for streets and roads. Net densities are always higher than gross densities. Sample net to gross calculation for single-family detached using a 25% net to gross factor: Gross density = net density * (1-0.25). For example: net density of 6.0 dwelling units per acre equates to a gross residential density of 4.5 dwelling units per acre (6.0 * (1-.25)=4.5).

51 The method 1 capacity estimates do not represent the minimum or maximum number of units possible on a particular site or any analysis of whether future development on a particular site can develop more or less densely than the overall density assumption.
Capacity Method 2: Larger LDR Parcels

Capacity Method 2 estimates the capacity on LDR parcels 1 to 5 acres and larger than 5 acres on land with a slope above 5% or an elevation above 900 feet. This method is useful to account for the lower densities achieved on large lots located in areas where constrained land, slopes and/or high elevations influence the number of residential lots that are created through land divisions.

Table 33 shows the categories of LDR land included in Capacity Method 2 in green highlight:

- Vacant and partially vacant parcels of 1 to 5 acres or larger than 5 acres on land with a slope above 5% and an elevation below 900 feet.
- Vacant and partially vacant parcels of 1 to 5 acres or larger than 5 acres on land with a slope below 5% and an elevation above 900 feet.
- Vacant parcels of 1 to 5 acres on land with a slope above 5% and an elevation above 900 feet.
- Vacant and partially vacant parcels larger than 5 acres on land with a slope above 5% and an elevation above 900 feet.

Table 33. Capacity method by category of land, with land included in Capacity Method 2 shown in green highlight

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900'</td>
<td>> 900'</td>
<td>< 900'</td>
</tr>
<tr>
<td>< 1 acre*</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5+ acre</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

*In parcels < 1 acre in LDR and HDR, this analysis applies to vacant land only. In parcels < 1 acre in MDR, this analysis applies to vacant land and partially vacant parcels 0.5-1 acres

Source: 2012 Residential Land Supply, City of Eugene

Capacity Method 2 multiplies the total acreage of land (including any constraints) by a density assumption (e.g., the average density at which an acre will develop). Again, the arithmetic is straightforward:

\[
\text{Land (ac) } \times \text{ Density (du/\text{ac}) } = \text{ Capacity (du)}
\]

For example:

100 acres of land \(\times 6 \text{ du/\text{ac}} \) = a capacity of 600 dwelling units

Use of this method allows the City to rely on the past development densities achieved on similarly situated land as the basis for determining development densities likely to be achieved in the future. This method was used to account for the fact that development capacity of larger lots (greater than 1 acre) in the City’s south hills (greater than 5% slopes
and/or above 900’ in elevation) is limited by those characteristics and development regulations that address them.52

- **Gross land** acreage estimates from the BLI (as opposed to the “buildable” land estimates used in Capacity Method 1).

- **Density** assumptions derived from analysis of all subdivision plats platted in the south hills between 2001 and 2012. The density assumptions are based on the total acreage in the subdivision plats (e.g., including any constrained land) and are lower than the density assumptions the City applied to similarly sized lots in less constrained areas using Capacity Method 1.

- The **capacity estimate** (in dwelling units) results from multiplying the gross acreage by these area-specific density assumptions. Capacity Method 2 results in an estimate of the total number of units that can reasonably expect to develop on the acres of gross land.

Using this method, the density assumption reflects that some land in the south hills is protected, highly treed, or severely sloped, while other land in the south hills can be developed at a higher density. This capacity method does not require a net-to-gross conversion because the density assumption is based on a gross density.

52 Use of this method in the south hills is significant because it ensures the City is not over-counting the capacity of more constrained / regulated residential land to accommodate needed housing. The actual residential densities of subdivision plats in the south hills between 2001 and 2012 is the best possible evidence of the residential densities that will occur on the similarly situated, undeveloped land in the south hills. The density assumptions reflect regulatory limitations imposed by the land use code and South Hills Study (SHS), a refinement plan to the Eugene-Springfield Metropolitan Area General Plan. Eugene’s policies in the SHS refinement plan and Eugene land use code result in the use of a Planned Unit Development (PUD) approval process for most large developments in this area. Policies in the SHS refinement plan and Eugene land use code also limit housing density for lots at an elevation of 901 feet or higher in this area. Although the SHS limitations are above or below 901 feet elevation, due to GIS inaccuracies, 900 foot elevation was used as the dividing elevation in this analysis.
Capacity Method 3: Smaller LDR Parcels

Like Capacity Method 2, this method is useful to account for the lower residential densities that can be achieved in the City’s south hills. This method, however, is also useful to estimate the capacity of small lots (mostly one acre or less): lots not likely to be further divided.

Table 34 shows the categories of LDR land included in Capacity Method 3 in green highlight:

- Vacant parcels of less than 1 acre in size on land with a slope above 5% and an elevation below 900 feet.
- Vacant parcels of less than 1 acre in size on land with any slope and an elevation above 900 feet.
- Partially vacant parcels 1 to 5 acres in size on land with a slope above 5% and an elevation above 900 feet.

Table 34. Capacity method by category of land, with land included in Capacity Method 3 shown in green highlight

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900’</td>
<td>> 900’</td>
<td>< 900’</td>
</tr>
<tr>
<td>< 1 acre*</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5+ acre</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

*In parcels < 1 acre in LDR and HDR, this analysis applies to vacant land only. In parcels < 1 acre in MDR, this analysis applies to vacant land and partially vacant parcels 0.5-1 acres

Source: 2012 Residential Land Supply, City of Eugene

This method multiplies the total number of lots by an assumption about the density at which a lot will develop. Again, the arithmetic is straightforward:

\text{Lots} \times \text{Density \ (du/lot)} = \text{Capacity \ (du)}

For example:

100 lots \times 1 \text{ du/lot} = \text{a capacity of 100 dwelling units}

It is reasonably clear that, even in sloped areas and areas above 900’ in elevation (south hills), almost every reasonably sized, undeveloped lot could develop with one home. For these smaller lots, an average density “per acre” is not as accurate as a “one dwelling unit per lot” measurement. To address the fact that there are some lots that are unlikely to build without adding more acreage (e.g., very small “sliver” tax lots with only hundreds of square feet and larger lots that may be fully
protected), the City did not assume any capacity for lots below a minimum lot size53 or on lots that were fully protected.

4.1.2 Residential development capacity of vacant land

The BLI identified any lots with a “vacant” land use code in the regional land use code system, or that has improvements of less than $1,000 of assessed improvement value, as “vacant” land. This section provides a baseline capacity estimate of vacant land.

Capacity Method 1: Relatively Flat LDR and All MDR & HDR

Capacity Method 1 requires an estimate of the amount of vacant land in acres. These estimates from the BLI are reflected in Table 35 and Table 36, below.54

Table 35 shows vacant residential acres, which excludes constrained areas, within the current UGB from the BLI.55

Table 35. Vacant residential acres within Eugene’s UGB that are subject to Capacity Method 1, Eugene BLI, 2012

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900’</td>
<td>> 900’</td>
<td>All Elevations</td>
</tr>
<tr>
<td>< 1 acre*</td>
<td>174</td>
<td>26</td>
<td>6</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>118</td>
<td>42</td>
<td>10</td>
</tr>
<tr>
<td>5+ acre</td>
<td>158</td>
<td>65</td>
<td>47</td>
</tr>
</tbody>
</table>

Source: 2012 Residential Land Supply, City of Eugene, BLI Table 3

Application of Capacity Method 1 also requires the City to make an assumption about development density of the vacant land in Table 35. The average density assumptions are presented in Table 36. These density assumptions are based on densities achieved for residential developments inside the City’s current UGB over the 2001 to 2012 period from Table 8.

53The minimum lot size in R-1 Low Density Residential of 4,500 square feet was used as a proxy for the threshold of a buildable lot size.

55 As explained in Section 4.1.1, land that is committed, protected, fully developed, or above 30% slope was considered “constrained” and, therefore, not included in the acreage used under Capacity Method #1: Standard Method. The remaining land is referred to as “buildable land.”
Table 36. Density assumptions, average dwelling units per vacant residential acre (net) for Capacity Method 1

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900’</td>
<td>> 900’</td>
<td></td>
</tr>
<tr>
<td>< 1 acre*</td>
<td>5.4</td>
<td>13.4</td>
<td>32.6</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>5.4</td>
<td>13.4</td>
<td>32.6</td>
</tr>
<tr>
<td>5+ acre</td>
<td>5.4</td>
<td>13.4</td>
<td>32.6</td>
</tr>
</tbody>
</table>

Source: 2012 Residential Land Supply, City of Eugene

The next step in Capacity Method 1 is adjusting the densities in Table 36 from net acres to gross acres, to account for buildable land that will be needed for rights-of-way (e.g., streets and sidewalks). As lot size increases, the need to use some vacant land for rights-of-way (e.g., streets and sidewalks) increases. For example:

When building one dwelling on an existing 0.5 acre lot with two existing houses, the new dwellings will have access to existing rights-of-way. The portion of the lot with the new house will be devoted entirely to residential uses.

When building one or more dwellings on a 10-acre lot with no existing houses, the developer will need to devote land to rights-of-way for internal circulation and connecting to the City’s street grid. Some portion of the lot will be devoted to rights-of-way and unavailable for residential development.

Table 37 shows assumptions about the amount of land necessary to account for rights-of-way in the density assumptions. These assumptions are based on empirical analysis of LDR, MDR and HDR land divisions during the 2001 to 2008 period. 56

Table 37 shows the following assumptions about converting from net densities to gross densities:

- **LDR.** Lots smaller than one acre will require only 4% for rights-of-way. Lots between one and five acres have a net-to-gross factor of 14%. Lots larger than five acres will have a net-to-gross factor of 26%. (Table 37).

- **MDR.** Lots smaller than one acre will require no land for rights-of-way. Lots between one and five acres have a net-to-gross factor of

56 The plat analysis used was based on subdivisions platted from 2001-2008. On average the City received about 22 final subdivision plat applications per year during this period. During 2009-2012 on average the City received only 4 final subdivision plat applications per year. Therefore, given the small amount of 2009-2012 final subdivision plats, the 2001-2008 data was assumed to be a reasonable data set. The City’s analysis of these developments is located.
14%. Lots larger than five acres will have a net-to-gross factor of 20%.

- **HDR.** Lots smaller than one acre will require no land for rights-of-way. Lots between one and five acres have a net-to-gross factor of 24%. Lots larger than five acres will have a net-to-gross factor of 34%.

Table 37. Net-to-gross conversion assumptions, dwelling units per acre, by plan designation Capacity Method 1, Eugene UGB

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900’</td>
<td>> 900’</td>
<td>All Elevations</td>
</tr>
<tr>
<td>< 1 acre</td>
<td>4%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>14%</td>
<td>14%</td>
<td>20%</td>
</tr>
<tr>
<td>5+ acre</td>
<td>26%</td>
<td>20%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Table 38 shows the gross density assumptions after the assumptions in Table 37 are applied to the net density assumptions.

Table 38. Density assumptions, average dwelling units per vacant residential acre (gross) for Capacity Method 1

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900’</td>
<td>> 900’</td>
<td>All Elevations</td>
</tr>
<tr>
<td>< 1 acre</td>
<td>5.2</td>
<td>13.4</td>
<td>12.5</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>4.6</td>
<td>11.5</td>
<td>10.7</td>
</tr>
<tr>
<td>5+ acre</td>
<td>4</td>
<td>10.7</td>
<td>10</td>
</tr>
</tbody>
</table>

Source: 2012 Residential Land Supply, City of Eugene

Table 39, Table 40, and Table 41 apply these assumptions to vacant residential land in to determine the number of residential units the City can accommodate, based on 2012 land use designations and regulations, on vacant land designated HDR; vacant land designated MDR; and vacant land designated LDR that is below 900’ in elevation and less than 5% slope. These tables show the math used to determine the number of residential units accommodated in each area, assuming a fraction of a dwelling unit is rounded down to the nearest dwelling unit.
Table 39. Dwelling Unit Capacity of LDR, Land Subject to Capacity Method 1

<table>
<thead>
<tr>
<th></th>
<th>LDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 900' in elevation</td>
<td></td>
</tr>
<tr>
<td><5% slope</td>
<td></td>
</tr>
<tr>
<td>< 1 acre</td>
<td><5% slope</td>
</tr>
<tr>
<td>174 acres</td>
<td></td>
</tr>
<tr>
<td>* 5.18 dwelling units per acre (5.4 dwelling units per gross acre minus 4% net-to-gross conversion factor)</td>
<td>902 units</td>
</tr>
<tr>
<td>118 acres</td>
<td></td>
</tr>
<tr>
<td>* 4.64 dwelling units per acre (5.4 dwelling units per gross acre with 14% net-to-gross conversion factor)</td>
<td>547 units</td>
</tr>
<tr>
<td>158 acres</td>
<td></td>
</tr>
<tr>
<td>* 4.00 dwelling units per acre (5.4 dwelling units per gross acre with 26% net-to-gross conversion factor)</td>
<td>631 units</td>
</tr>
</tbody>
</table>

Table 40. Dwelling Unit Capacity of MDR Land Subject to Capacity Method 1

<table>
<thead>
<tr>
<th></th>
<th>MDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Elevations</td>
<td></td>
</tr>
<tr>
<td><5% slope</td>
<td></td>
</tr>
<tr>
<td>< 1 acre</td>
<td><5% slope</td>
</tr>
<tr>
<td>26 acres</td>
<td></td>
</tr>
<tr>
<td>* 13.40 dwelling units per acre (1:1 net-to-gross)</td>
<td>348 units</td>
</tr>
<tr>
<td>4 acres</td>
<td></td>
</tr>
<tr>
<td>* 12.50 dwelling units per acre (1:1 net-to-gross)</td>
<td>50 units</td>
</tr>
<tr>
<td>42 acres</td>
<td></td>
</tr>
<tr>
<td>* 11.51 dwelling units per acre (13.4 dwelling units per gross acre with 14% net-to-gross conversion factor)</td>
<td>483 units</td>
</tr>
<tr>
<td>10 acres</td>
<td></td>
</tr>
<tr>
<td>* 10.74 dwelling units per acre (12.5 dwelling units per gross acre with 14% net-to-gross conversion factor)</td>
<td>107 units</td>
</tr>
<tr>
<td>65 acres</td>
<td></td>
</tr>
<tr>
<td>* 10.71 dwelling units per acre (13.4 dwelling units per gross acre with 20% net-to-gross conversion factor)</td>
<td>695 units</td>
</tr>
<tr>
<td>47 acres</td>
<td></td>
</tr>
<tr>
<td>* 10.00 dwelling units per acre (12.5 dwelling units per gross acre with 20% net-to-gross conversion factor)</td>
<td>469 units</td>
</tr>
</tbody>
</table>
Table 41. Dwelling Unit Capacity of HDR Land Subject to Capacity Method 1

<table>
<thead>
<tr>
<th>Vacant Land</th>
<th><5% slope</th>
<th>5 to <30% slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 acre</td>
<td>6 acres</td>
<td>0.4 acre</td>
</tr>
<tr>
<td></td>
<td>* 32.60 dwelling units per acre (1:1 net-to-gross)</td>
<td>*32.60 dwelling units per acres (1:1 net-to-gross)</td>
</tr>
<tr>
<td></td>
<td>= 195 units</td>
<td>= 13 units</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>6 acres</td>
<td>0 acres</td>
</tr>
<tr>
<td></td>
<td>* 24.84 dwelling units per acre (32.6 dwelling units per gross acre with 24% net-to-gross conversion factor)</td>
<td>0 acres</td>
</tr>
<tr>
<td></td>
<td>= 149 units</td>
<td></td>
</tr>
<tr>
<td>5+ acre</td>
<td>32 acres</td>
<td>0 acres</td>
</tr>
<tr>
<td></td>
<td>* 21.52 dwelling units per acre (32.6 dwelling units per gross acre with 34% net-to-gross conversion factor)</td>
<td>0 acres</td>
</tr>
<tr>
<td></td>
<td>= 688 units</td>
<td></td>
</tr>
</tbody>
</table>
Capacity Method 2: Larger LDR Parcels

Capacity Method 2 requires an estimate of the amount of vacant land in gross acres within the current UGB that fall within the applicable categories (e.g., no constraints such as greater than 30% slope or protected land is removed). The City’s BLI provides this information. Table 42 shows vacant residential land for areas subject to Capacity Method 2.

Table 42. Vacant residential acres within Eugene’s UGB that are subject to Capacity Method 2, Eugene BLI, 2012

<table>
<thead>
<tr>
<th></th>
<th>LDR</th>
<th>MDR</th>
<th>HDR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900’</td>
<td>> 900’</td>
<td>All Elevations</td>
</tr>
<tr>
<td>Slope <5%</td>
<td>≥5%</td>
<td><5%</td>
<td>≥5%</td>
</tr>
<tr>
<td>< 1 acre*</td>
<td>187</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>392</td>
<td>8</td>
<td>123</td>
</tr>
</tbody>
</table>

Source: 2012 Residential Land Supply, City of Eugene, 2012 BLI Table 3

Application of Capacity Method 2 also requires the City to make an assumption about how densely the subject land will develop under the City’s 2012 land use designations and regulations, considering trends, in terms of the average number of dwelling units per acre.

Table 43 shows average density assumptions for dwelling units per gross acre, based on average densities achieved in subdivision plats in the south hills within the UGB over the 2001 to 2012 period.

Table 43. Density assumptions, average dwelling units per vacant residential acre (gross) for Capacity Method 2

<table>
<thead>
<tr>
<th></th>
<th>LDR</th>
<th>MDR</th>
<th>HDR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900’</td>
<td>> 900’</td>
<td>All Elevations</td>
</tr>
<tr>
<td>Slope <5%</td>
<td>≥5%</td>
<td><5%</td>
<td>≥5%</td>
</tr>
<tr>
<td>< 1 acre*</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Source: 2012 Residential Land Supply, City of Eugene

Table 44 applies the density assumptions to vacant residential land to determine the number of residential units the City can accommodate, based on 2012 land use designations and regulations, on vacant land designated LDR that is greater than 1 acre and is 5% or more in slope and/or above 900’ in elevation.

57 Vacant residential land is documented in Part I 2012 Residential Land Supply.
Table 44. Dwelling Unit Capacity of HDR Land Subject to Capacity Method 2

<table>
<thead>
<tr>
<th>LDR</th>
<th>Below 900’ in elevation</th>
<th>Above 900’ in elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥5% slope</td>
<td><5% slope</td>
</tr>
<tr>
<td></td>
<td>< 1 acre</td>
<td>187 acres</td>
</tr>
<tr>
<td></td>
<td>1-5 acre</td>
<td>2.5 dwelling units per acre</td>
</tr>
<tr>
<td></td>
<td>5+ acre</td>
<td>980 units</td>
</tr>
</tbody>
</table>
Capacity Method 3: Smaller LDR Parcels

Capacity Method 3 requires the number of vacant residential lots that fall within this category of land, within the current UGB. The City’s BLI provides this information.\(^5\) In recognition of the fact that there are some very small parcels that would need to be combined with another lot to be developed with a new residential unit, the City applied a minimum lot size threshold of 4,500 square feet. No capacity was attributed to lots smaller than 4,500 square feet or that are fully protected or fully 30% or more in slope.

Table 45 shows the number of vacant residential lots inside the City’s current UGB for land subject to Capacity Method 3.

Table 45. Vacant residential lots within Eugene’s UGB that are subject to Capacity Method 3, Eugene BLI, 2012

| Source: 2012 Residential Land Supply, City of Eugene, 2012 BLI Table 3 |
|---|---|---|---|---|---|
| Slope | Low Density Residential | Medium Density Residential | High Density Residential |
| < 900’ | > 900’ | All Elevations | All Elevations |
| < 5% | ≥ 5% | < 5% | ≥ 5% | < 5% | ≥ 5% |
| < 1 acre\(^*\) | 768 | 5 | 115 |
| 1-5 acre | | | |
| 5+ acre | | | |

Application of Capacity Method 3 also requires the City to make an assumption about how densely the subject land will develop under the City’s current regulations, considering trends, in terms of the average number of dwelling units per lot.

Policy language in the South Hills Study limits development on vacant land 901 feet in elevation or greater to one dwelling per existing lot, but allows an owner to increase densities through an approved land division through the planned unit development (PUD) process. Analysis shows that very few PUDs have been approved on south hills lots of less than 5 acres in size. This is likely due in part to the relatively high cost of a PUD and limited profit potential for the division of a lot of less than one acre. It is reasonable to assume that sites less than one acre are unlikely to go through a PUD land division.\(^5\) Therefore a “one house per lot” density assumption is most accurate.

\(^5\) The number of residential parcels subject to Capacity Method 3 is documented in Part I 2012 Residential Land Supply.

\(^5\) Analysis found that in a recent development, specifically a larger development site, more than one dwelling per vacant lot occurred above 900 feet. However, since 1990 only three planned unit developments (PUD) have been approved less than 5 acres in size, likely due in part to the relatively high cost of a PUD.
Table 46 shows the assumption of the number of dwelling units per lot assumed for land subject to Capacity Method 3.

Table 46. Dwelling unit per lot assumption for Capacity Method 3

<table>
<thead>
<tr>
<th>Slope</th>
<th>< 900' <5%</th>
<th>< 900' ≥5%</th>
<th>> 900' <5%</th>
<th>> 900' ≥5%</th>
<th>All Elevations <5%</th>
<th>All Elevations ≥5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 acre</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5 acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5+ acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: 2012 Residential Land Supply, City of Eugene

Table 47 applies these assumptions to determine the number of residential units the City can accommodate, based on 2012 land use designations and regulations, on land designated LDR that is less than 1 acre and is 5% or more in slope and/or above 900’ in elevation.

Table 47. Dwelling Unit Capacity of LDR Land Subject to Capacity Method 3

<table>
<thead>
<tr>
<th>Vacant Land</th>
<th>Below 900’ in elevation</th>
<th>Above 900’ in elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤5% slope</td>
<td>>5% slope</td>
</tr>
<tr>
<td>< 1 acre</td>
<td>768 lots</td>
<td>5 lots</td>
</tr>
<tr>
<td></td>
<td>= 768 units</td>
<td>= 5 units</td>
</tr>
</tbody>
</table>

Source: 2012 Residential Land Supply, City of Eugene

Vacant Land Capacity Summary

Table 48 shows a summary of capacity on Eugene’s vacant residential land for lands subject to Capacity Method 1, Capacity Method 2, and Capacity Method 3. Eugene’s vacant residential land has capacity to accommodate approximately 8,817 new dwelling units on vacant land based on the assumptions described in this Chapter.

Table 48. Estimated housing potential on vacant residential lands by plan designation

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900' <5%</td>
<td>< 900' ≥5%</td>
<td>> 900' <5%</td>
</tr>
<tr>
<td>< 1 acre</td>
<td>902</td>
<td>768</td>
<td>5</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>547</td>
<td>467</td>
<td>0</td>
</tr>
<tr>
<td>5+ acre</td>
<td>631</td>
<td>980</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>4,864</td>
<td></td>
<td>2,152</td>
</tr>
</tbody>
</table>
4.1.3 Residential development capacity of land on partially vacant lots

The BLI identified any lot with over $1,000 of improvement value as “developed” (not vacant) land. Some of these developed lots, however, are partially vacant and have some additional residential development capacity. This section provides an estimate of the baseline capacity of land on “partially vacant lots.”

To be considered “partially vacant,” with capacity for additional residential development, a lot has to be of sufficient size. For a lot to be considered “partially vacant,” it must be at least: one acre in LDR, .5 acre in MDR, or one acre in HDR.60 Lots below these minimum sizes may have some “redevelopable” capacity, as explained in section 4.2, below.

Lots above these minimum size thresholds were assumed to have capacity if they were not fully developed (e.g., buildings, parking areas, infrastructure, developed multi-family open space areas) and not owned or used for non-residential use (religious institutions, schools). City staff and the Technical Resource Group (TRG)61 conducted a parcel-by-parcel review of the larger land areas (as defined below) that were initially categorized as “developed” to determine if any of these sites have additional room for development (i.e., are partially vacant land) or if they are fully developed. Several resources were used to complete this analysis including aerial photos, Tax Assessor information, land use codes, and local knowledge.

Examples of lots with partially vacant capacity include:

- A five acre LDR lot that is developed with only one single-family home, driveway and accessory buildings which still has a remaining buildable area.

60 All developed lots over .5 acre in size in Medium Density Residential and all lots over .25 acre in size in High Density Residential were examined individually for partially vacant land capacity. Some partially vacant lot capacity was found in .5 acre or larger MDR lots, and, some partially vacant lot capacity was found in HDR lots one or great in size. Therefore, partially vacant capacity was assumed to occur on MDR lots .5 ac or larger and HDR lots one acre or larger.

61 The Technical Resource Group was a committee of community members with technical expertise who assisted City staff in the review and refinement of the buildable lands inventory and the assumptions and methods referred to in the HNA, including conducting an analysis of capacity of partially vacant land.
- A one acre MDR site developed with apartments and associated parking and landscaped open space, which still has a remaining buildable area.

City staff and the TRG explored several possible methodologies for identifying the capacity of partially vacant land. For the same reasons explained above, staff and the TRG used the same three methods described in section 4.1.1, Capacity Method 1, Capacity Method 2, and Capacity Method 3.

As discussed in section 4.1.1, with one exception, the City applied the three capacity methods to the same land categories in section 4.1.1 regardless of whether the land is vacant or partially vacant. The only difference in the way the City applied the three capacity methods to partially vacant land is that, for partially vacant LDR land, Capacity Method 3 was used (instead of Capacity Method 2) for lots above 900’ in elevation, above 5% slope and of 1-5 acres. The reason for this difference is explained under the Capacity Method 3 analysis, below.

Capacity Method 1 and Capacity Method 2 require an estimate of the number of partially vacant land acres from the BLI. The BLI estimates of partially vacant land include entire sites, including the portions of the sites that are already developed. To determine the capacity of partially vacant land, the BLI acreage totals were adjusted, with a deduction for existing development on each site. A review of development on the partially vacant LDR lots identified a reasonable deduction for existing houses or structures on the lot as .33 ac on lots less than five percent slope, and .5 ac on lots with slopes of five percent or greater. Review of existing development on the MDR and HDR partially vacant lots identified a reasonable deduction for existing structures, parking, and open space on the lot as either .25 acre, .5 acre, or the approximate amount of the actual existing development if the existing development is over 1 acre. These adjusted acreage totals are reflected in the tables, below.
Capacity Method 1

Capacity Method 1 was applied to partially vacant land the same way it was applied to vacant land (in section 4.1.1), beginning with the amount of partially vacant residential acres, excluding any constrained, protected or committed areas, within the current UGB from the BLI.

Table 49 shows the estimate of partially vacant land used in Capacity Method 1.

Table 49. Partially vacant residential acres within Eugene’s UGB that are subject to Capacity Method 1, Eugene BLI, 2012

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900’</td>
<td>> 900’</td>
<td>All Elevations</td>
</tr>
<tr>
<td>< 1 acre</td>
<td>N/A **</td>
<td>18.5</td>
<td>1</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>235</td>
<td>46.9</td>
<td>13.2</td>
</tr>
<tr>
<td>5+ acre</td>
<td>264</td>
<td>75.1</td>
<td>54</td>
</tr>
</tbody>
</table>

*In parcels < 1 acre in LDR and HDR, this analysis applies to vacant land only. In parcels < 1 acre in MDR, this analysis applies to vacant land < 1 acre and partially vacant parcels 0.5-<1 acres.

**The capacity of LDR and HDR land less than 1 acre in size is captured under the redevelopment and infill analysis.

Source: 2012 Residential Land Supply, City of Eugene, Table 5

Application of Capacity Method 1 also requires the City to make an assumption about the development density of the partially vacant land in Table 49. The average density assumptions are presented in Table 50. These density assumptions are based on densities achieved residential developments inside the City’s current UGB over the 2001 to 2012 period from Table 8. The City used the same density assumptions as it used for vacant land.

Table 50. Density assumptions, average dwelling units per partially vacant residential acre (net) for Capacity Method 1

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900’</td>
<td>> 900’</td>
<td>All Elevations</td>
</tr>
<tr>
<td>< 1 acre</td>
<td>N/A</td>
<td>13.4</td>
<td>12.5</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>5.4</td>
<td>13.4</td>
<td>12.5</td>
</tr>
<tr>
<td>5+ acre</td>
<td>5.4</td>
<td>13.4</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Source: 2012 Residential Land Supply, City of Eugene

The next step in Capacity Method 1 is adjusting the densities in Table 50 from net acres to gross acres, to account for buildable land that will be needed for rights-of-way (e.g., streets and sidewalks). The City used the same net-to-gross conversion factor as it used for vacant land. Table 51 shows assumptions about the amount of land necessary to account for rights-of-way in the density assumptions.
Table 51. Net-to-gross conversion assumptions, dwelling units per acre, by plan designation Capacity Method 1, Eugene UGB

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900'</td>
<td>> 900'</td>
<td>< 900'</td>
</tr>
<tr>
<td>< 1 acre*</td>
<td>N/A</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>14%</td>
<td>14%</td>
<td>14%</td>
</tr>
<tr>
<td>5+ acre</td>
<td>26%</td>
<td>26%</td>
<td>26%</td>
</tr>
</tbody>
</table>

Table 52, Table 53, and Table 54 show the application of these assumptions to buildable partially vacant land in Capacity Method 1, to determine the number of residential units the City can accommodate, based on 2012 land use designations and regulations, on partially vacant land designated LDR that is below 900’ in elevation and less than 5% slope; partially vacant land designated MDR; and partially vacant land designated HDR.

Table 52. Dwelling Unit Capacity of LDR, Land Subject to Capacity Method 1

<table>
<thead>
<tr>
<th>Partially Vacant Land</th>
<th>LDR Below 900’ in elevation</th>
<th><5% slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 acre</td>
<td>235 acres (includes .33 acre deduction per lot for exiting development)</td>
<td>N/A</td>
</tr>
<tr>
<td>* 4.64 dwelling units per acre (5.4 dwelling units per gross acre with 14% net-to-gross conversion factor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>= 1,080 units</td>
<td>264 acres (includes .33 acre deduction per lot for existing development)</td>
<td></td>
</tr>
<tr>
<td>* 4 dwelling units per acre (5.4 dwelling units per gross acre with 26% net-to-gross conversion factor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>= 1,057 units</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 53. Dwelling Unit Capacity of MDR Land Subject to Capacity Method 1

<table>
<thead>
<tr>
<th>Partially Vacant Land</th>
<th>MDR All Elevations</th>
<th>5 to <30% slope</th>
</tr>
</thead>
<tbody>
<tr>
<td><5% slope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5 to < 1 acre</td>
<td>18.52 acres (includes deduction per lot for existing development**)</td>
<td>2.45 acres (includes deduction per lot for existing development)</td>
</tr>
<tr>
<td></td>
<td>* 13.4 dwelling units per acre (13.4 dwelling units per gross acre with 0% net-to-gross conversion factor)</td>
<td>* 12.5 dwelling units per acre (12.5 dwelling units per gross acre with 0% net-to-gross conversion factor)</td>
</tr>
<tr>
<td></td>
<td>= 248 units</td>
<td>= 31 units</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>44.03 acres (includes deduction per lot for existing development)</td>
<td>13.23 acres (includes deduction per lot for existing development)</td>
</tr>
<tr>
<td></td>
<td>* 11.51 dwelling units per acre (13.4 dwelling units per gross acre with 14% net-to-gross conversion factor)</td>
<td>* 10.74 dwelling units per acre (12.5 dwelling units per gross acre with 14% net-to-gross conversion factor)</td>
</tr>
<tr>
<td></td>
<td>= 507 units</td>
<td>= 142 units</td>
</tr>
<tr>
<td>5+ acre</td>
<td>75.10 acres (includes deduction per lot for existing development)</td>
<td>53.98 acres (includes deduction per lot for existing development)</td>
</tr>
<tr>
<td></td>
<td>* 10.71 dwelling units per acre (13.4 dwelling units per gross acre with 20% net-to-gross conversion factor)</td>
<td>* 10 dwelling units per acre (12.5 dwelling units per gross acre with 20% net-to-gross conversion factor)</td>
</tr>
<tr>
<td></td>
<td>= 804 units</td>
<td>= 540 units</td>
</tr>
</tbody>
</table>

** For MDR and HDR land, the deduction for existing structures, parking and open space on the lot is either .25 acre, .5 acre or the approximate amount of the actual existing development if the existing development is over 1 acre.
Table 54. Dwelling Unit Capacity of HDR Land Subject to Capacity Method 1

<table>
<thead>
<tr>
<th>Partially Vacant Land</th>
<th>HDR All Elevations</th>
<th>N/A</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 acre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5 acre</td>
<td>0 acres (includes deduction per lot for existing development)</td>
<td>* 24.8 dwelling units per acre (32.6 dwelling units per gross acre with 24% net-to-gross conversion factor) = 0 units</td>
<td>* 24.8 dwelling units per acre (32.6 dwelling units per gross acre with 24% net-to-gross conversion factor) = 0 units</td>
</tr>
<tr>
<td>5+ acre</td>
<td>25.8 acres (includes deduction per lot for existing development)</td>
<td>* 21.5 dwelling units per acre (32.6 dwelling units per gross acre with 34% net-to-gross conversion factor) = 555 units</td>
<td>* 21.5 dwelling units per acre (32.6 dwelling units per gross acre with 34% net-to-gross conversion factor) = 0 units</td>
</tr>
</tbody>
</table>
Capacity Method 2

Capacity Method 2 requires an estimate of the amount of partially vacant land in gross acres within the current UGB that fall within the applicable categories (e.g., no constraints such as greater than 30% slope or protected land is removed). The City’s BLI provides this information. Table 55 shows partially vacant residential land for areas subject to Capacity Method 2.

Table 55. Partially vacant residential acres within Eugene’s UGB that are subject to Capacity Method 2, Eugene BLI, 2012

<table>
<thead>
<tr>
<th>Slope</th>
<th><5%</th>
<th>≥5%</th>
<th><5%</th>
<th>≥5%</th>
<th><5%</th>
<th>≥5%</th>
<th>0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 acre*</td>
<td>244</td>
<td>2</td>
<td>138</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5 acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5+ acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: 2012 Residential Land Supply, City of Eugene, 2012 BLI Table 5

Application of Capacity Method 2 also requires the City to make an assumption about how densely the subject land will develop under the City’s 2012 land use designations and regulations, considering trends, in terms of the average number of dwelling units per acre.

Table 43 shows an average density assumption of 2.5 dwelling units per acre based on the density achieved in subdivision plats in the south hills inside the City’s current UGB over the 2001 to 2012 period.

Table 56. Average dwelling units per vacant residential (gross) acre as of 2012

<table>
<thead>
<tr>
<th>Slope</th>
<th><5%</th>
<th>≥5%</th>
<th><5%</th>
<th>≥5%</th>
<th>0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 acre*</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>1-5 acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5+ acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: 2012 Residential Land Supply, City of Eugene

Table 57 applies the density assumptions to partially vacant residential land in Method 2 to determine the number of residential units the City can accommodate, based on 2012 land use designations and regulations, on partially vacant land designated LDR that is greater than 1 acre and is 5% or more in slope and below 900’ in elevation, and LDR land that is greater than 1 acres and is less than 5% slope but above 900’ in elevation.

Table 57. Dwelling Unit Capacity of LDR Land Subject to Capacity Method 2

<table>
<thead>
<tr>
<th>Vacant Land</th>
<th>Below 900’ in elevation</th>
<th>Above 900’ in elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥5% slope</td>
<td><5% slope</td>
</tr>
<tr>
<td>< 1 acre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5 acre</td>
<td>244 acres (includes .5 acre deduction per lot for existing development)</td>
<td>2 acres (includes .33 acre deduction per lot for existing development)</td>
</tr>
<tr>
<td>5+ acre</td>
<td>138 acres (includes .5 acre deduction per lot for existing development)</td>
<td>0 acres (includes .33 acre deduction per lot for existing development)</td>
</tr>
</tbody>
</table>

Source: 2012 Residential Land Supply, City of Eugene
Capacity Method 3

Capacity Method 3 requires the number of partially vacant residential lots that fall within this category of land, within the current UGB. The City’s BLI provides this information.63 Table 58 shows partially vacant lots subject to Capacity Method 3.

Table 58. Partially vacant residential lots within Eugene’s UGB that are subject to Capacity Method 3, Eugene BLI, 2012

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900’</td>
<td>> 900’</td>
<td>< 900’</td>
</tr>
<tr>
<td>< 1 acre</td>
<td>N/A*</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>35</td>
<td>N/A</td>
<td>35</td>
</tr>
<tr>
<td>5+ acre</td>
<td>N/A*</td>
<td>35</td>
<td>0%</td>
</tr>
</tbody>
</table>

Source: 2012 Residential Land Supply, City of Eugene, 2012 BLI Table 5

*The capacity of LDR and HDR land less than 1 acre in size is captured under the redevelopment and infill analysis.

Application of Capacity Method 3 also requires the City to make an assumption about how densely the subject land will develop under the City’s current regulations, considering trends, in terms of the average number of dwelling units per lot.

Policy language in the South Hills Study limits development on vacant land 901 feet in elevation or greater to one dwelling per existing lot, but allows an owner to increase densities through an approved land division through the planned unit development (PUD) process. Analysis shows that very few PUDs have been approved on south hills lots of less than 5 acres in size. This is likely due in part to the relatively high cost of a PUD and limited profit potential for the division of smaller lots. It is reasonable to assume that the smaller partially vacant lots in this 1-5 acre category are unlikely to go through a PUD but that the larger lots in this category may. Therefore one dwelling per lot represents the average assumed to occur throughout this entire category of land and does not represent an assumption that one new dwelling will occur on each lot.

Table 59 shows the assumption of the number of dwelling units per lot assumed for land subject to Capacity Method 3.

63 The number of residential parcels subject to Capacity Method 3 is documented in Part I 2012 Residential land Supply.
Table 59. Dwelling unit per lot assumption for Capacity Method 3

<table>
<thead>
<tr>
<th>Partially Vacant Land</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900’</td>
<td>> 900’</td>
<td>All Elevations</td>
</tr>
<tr>
<td>Slope</td>
<td><5%</td>
<td>≥5%</td>
<td><5%</td>
</tr>
<tr>
<td>< 1 acre</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>5+ acre</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Source: 2012 Residential Land Supply, City of Eugene

Table 60 applies these assumptions to determine the number of residential units the City can accommodate, based on 2012 land use designations and regulations, on partially vacant land designated LDR that is above 900’ in elevation, 5% or more in slope, and 1-5 acres.

Table 60. Dwelling Unit Capacity of LDR Land Subject to Capacity Method 3

<table>
<thead>
<tr>
<th>Partially Vacant Land</th>
<th>LDR Below 900’ in elevation</th>
<th>All Elevations</th>
<th>Above 900’ in elevation</th>
<th>All Elevations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥5% slope</td>
<td><5% slope</td>
<td>≥5% slope</td>
<td></td>
</tr>
<tr>
<td>< 1 acre</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>1-5 acre</td>
<td>35 lots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5+ acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 1 dwelling units per lot
= 35 units

Partially Vacant Land Summary

Table 61 shows that Eugene’s partially vacant residential land has capacity to accommodate approximately 5,986 new dwelling units on partially vacant lots based on the assumptions described in this Chapter.

Table 61. Estimated housing potential on partially vacant residential lands by plan designation, number of dwelling units, Eugene UGB

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900’</td>
<td>> 900’</td>
<td>All Elevations</td>
</tr>
<tr>
<td></td>
<td><5%</td>
<td>≥5%</td>
<td><5%</td>
</tr>
<tr>
<td>< 1 acre</td>
<td>248</td>
<td>31</td>
<td>507</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>1,080</td>
<td>611</td>
<td>5</td>
</tr>
<tr>
<td>5+ acre</td>
<td>1,057</td>
<td>345</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>3,159</td>
<td></td>
<td>2,272</td>
</tr>
</tbody>
</table>

Part II – Eugene Housing Needs Analysis ECONnorthwest Page 143
4.2 Residential development capacity of land on redevelopable lots

The City identified some additional development capacity on residential land to accommodate additional housing through redevelopment, where new housing is built on mostly developed land that may require removal of all or a portion of the existing development. This baseline estimate of capacity was based on historical redevelopment trends and is an estimate of redevelopment potential without additional market interventions. In other words, the City estimated the amount of redevelopment expected to occur without additional actions taken by the City to encourage it (e.g., new policies or other strategies to increase redevelopment activity).

The baseline redevelopment estimates are derived from historical redevelopment trends that occurred on smaller developed lots. Lots considered for redevelopment potential included only those smaller than the minimum lot size used to identify partially vacant land: less than one acre in LDR, less than .5 acre in MDR, and less than one acre in HDR.

LDR Redevelopment Land

The amount of redevelopment assumed to occur in LDR areas was determined based on the number of units developed through redevelopment during the 2001 to 2012 period that was redevelopment. This analysis assumes that this number of new units resulting from redevelopment will remain the same over the 2012-2032 period. These baseline redevelopment estimates require no new land to accommodate the anticipated residential development.

Some developed LDR lots less than an acre in size will be divided, resulting in increased capacity in the future. During the 2001 to 2012 period, an average of 31.3 new lots per year resulted from dividing developed LDR lots less than one acre in size. Assuming the same amount of redevelopment will occur annually, an additional 627 lots will be created by dividing more of these smaller developed LDR lots.

Table 62. New lots created on LDR lots less than one acre in size, 2012-2032

<table>
<thead>
<tr>
<th>Net new lots created in 2001-2008</th>
<th>Net new lots created in 2009-2012</th>
<th>Net new lots created 2001-2012</th>
<th>Net new lots created per year in 12 years</th>
<th>20 year forecast of new LDR lots</th>
</tr>
</thead>
<tbody>
<tr>
<td>231</td>
<td>145</td>
<td>376</td>
<td>31.3</td>
<td>627</td>
</tr>
</tbody>
</table>

Additionally, secondary dwelling units are units typically built on land with existing housing (occasionally they are constructed in conjunction with a new house). The demand for secondary dwelling units (SDU) will
continue in the future. During the 2001 to 2012 period, an average of 8.4 new SDUs were developed on small LDR lots per year. Assuming the same demand will continue over the 20 year period, an additional 168 SDUs will be developed on LDR or R-1 zoned land.64

Table 63. New secondary dwelling units created, 2012-2032

<table>
<thead>
<tr>
<th>Total City-wide SDUs in LDR or R-1 2001-2012</th>
<th>Deduction for single-family code amendments*</th>
<th>Net new SDUs in LDR or R-1 2001-2012</th>
<th>Total per year</th>
<th>20 year estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>-18</td>
<td>101</td>
<td>8.4</td>
<td>168</td>
</tr>
</tbody>
</table>

*Amendments to the zoning code were adopted after 2012 that added restrictions to SDUs. These SDU restrictions were related to interim protection measures for areas around the University of Oregon, increasing the minimum lot size for an SDU to 6,100 square feet, and restrictions on flag lots. Those 2001-2012 SDUs that might not have met these new standards were deducted from the total so that the forecast does not assume that SDUs on these types of lots would occur in the future.

MDR and HDR redevelopment land

The amount of redevelopment assumed in the Medium and High Density Residential designations was also determined based on the number of units developed through redevelopment during the 2001 to 2012 period.

Demand for additional development on developed MDR lots less than .5 acre and developed HDR lots less than 1 acre to add housing will continue in the future. During the 2001 to 2012 period, an average of about 11 and 12 new dwellings were added to smaller MDR and HDR lots, respectively.65 Assuming the same amount of redevelopment continues annually over the 20 year period, an additional 220 and 240 new dwelling units will be accommodated on smaller developed MDR and HDR lots, respectively.

Table 64. New Dwellings Created on MDR and HDR Small Lots, 2012-2032

<table>
<thead>
<tr>
<th></th>
<th>2001-2012</th>
<th>Deduction for student housing units</th>
<th>Net new dwellings</th>
<th>Total per year</th>
<th>20 year estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDR <.5 acre</td>
<td>153</td>
<td>-26</td>
<td>127</td>
<td>11</td>
<td>220</td>
</tr>
<tr>
<td>HDR < one acre</td>
<td>604</td>
<td>-457</td>
<td>147</td>
<td>12</td>
<td>240</td>
</tr>
</tbody>
</table>

64 These estimates include deductions to account for recently adopted land use code amendments that limit the amount of lots eligible for SDUs in the future.

65 Based on the University of Oregon’s projection of no new student growth for the next 10 years, it is assumed that the recent apartment boom around the university will not continue over the 20 year period. Therefore, these estimates are based on the number of new dwelling units added during 2001-2012, excluding those assumed to be for student housing (e.g. new multi-family located near the university).
Some baseline redevelopment capacity for high density housing was also identified on Commercial designated land. City staff and the TRG developed a tool to estimate redevelopment potential on commercial lands in Eugene based on factors such as land price and rent. This tool produced an estimate of redevelopment for high density housing that is reasonably likely to occur in two Commercial areas without interventions from the City; 21 dwellings downtown and 235 in the Franklin Boulevard area (near the University of Oregon).66

Estimate of Baseline Redevelopment Capacity

As shown in Table 65, the City’s analysis found the following baseline capacity through residential redevelopment in Eugene: LDR land has capacity to accommodate 795 dwelling units through redevelopment, MDR has capacity to accommodate 220 dwelling units through redevelopment, and HDR and Commercial lands combined have capacity to accommodate 496 high density dwelling units through redevelopment.

Table 65. Estimated housing capacity through baseline redevelopment on residential land, Eugene, 2012 to 2032

<table>
<thead>
<tr>
<th>Estimated New Dwelling Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated New Dwelling Units</td>
</tr>
<tr>
<td>Low density residential- new lots baseline</td>
</tr>
<tr>
<td>Low density residential- SDU baseline</td>
</tr>
<tr>
<td>Medium Density Residential</td>
</tr>
<tr>
<td>High Density Residential</td>
</tr>
<tr>
<td>Commercial (HDR dwellings in Com)</td>
</tr>
</tbody>
</table>

66 The redevelopment estimating tool uses a market-based approach to estimate redevelopment potential by examining different “prototype” projects – including office, retail, rental housing, and mixed use buildings for market viability on every tax lot, city-wide, located within commercial land use designations. See the Technical Support Documentation for residential lands for more information.
4.3 Summary of residential development capacity

Table 66 summarizes the capacity of residential land in Eugene to accommodate new housing. Eugene’s residential land has the following capacity:

- Vacant land has capacity for a total of 8,061 new dwelling units.
- Partially vacant land has capacity for 5,985 new dwelling units.
- Baseline redevelopment results in capacity for 1,511 new dwelling units.
- Total capacity is for 15,557 new dwelling units.

Table 66. Residential land capacity summary, Eugene, 2012

<table>
<thead>
<tr>
<th>Size Class/Plan Designation</th>
<th>Vacant</th>
<th>Partially Vacant</th>
<th>Redevelopment Capacity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Density Residential</td>
<td>4,864</td>
<td>3,158</td>
<td>795</td>
<td>8,817</td>
</tr>
<tr>
<td>Medium Density Residential</td>
<td>2,152</td>
<td>2,272</td>
<td>220</td>
<td>4,644</td>
</tr>
<tr>
<td>High Density Residential</td>
<td>1,045</td>
<td>555</td>
<td>496</td>
<td>2,096</td>
</tr>
<tr>
<td>Total</td>
<td>8,061</td>
<td>5,985</td>
<td>1,511</td>
<td>15,557</td>
</tr>
</tbody>
</table>
4.4 Residential land sufficiency

The last step in the analysis of the sufficiency of residential land within the Eugene UGB is to residential capacity (Table 67) with the forecast of housing need in Eugene for the 2012-2032 period (Table 31). Table 67 shows Eugene has:

- A LDR land surplus of 63 dwelling units or 16 acres.
- A MDR land surplus of 1,389 dwelling units or 130 acres.
- A HDR land deficit of 1,000 dwelling units or 47 acres.

Table 67. Comparison of capacity of existing residential land with need for new dwelling units, Eugene UGB, 2012-2032

<table>
<thead>
<tr>
<th>Plan Designation</th>
<th>Capacity of existing land (DU Potential Vacant, Partially Vacant, and Redev.)</th>
<th>Housing Need</th>
<th>Residential Capacity -- Surplus or Deficit</th>
<th>Density (DU/Gross Acre)</th>
<th>Land Deficit or Surplus (Gross Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Density Residential</td>
<td>8,817</td>
<td>8,754</td>
<td>63</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Medium Density Residential</td>
<td>4,644</td>
<td>3,255</td>
<td>1,389</td>
<td>10.7</td>
<td>130</td>
</tr>
<tr>
<td>High Density Residential</td>
<td>2,096</td>
<td>3,096</td>
<td>-1,000</td>
<td>21.5</td>
<td>-47</td>
</tr>
</tbody>
</table>

In addition to the land deficit or surplus shown in Table 67, Eugene needs to plan for additional group quarters. The analysis described in section 3.1.2 estimates Eugene will add 1,554 persons in group quarters between 2012 and 2032. Assuming that the household size of group quarters is 1.6 persons per household and that group quarters develop at the same density as structures with 5 or more units in HDR, Eugene will need about 45 gross acres of land for group quarters over the 20-year period.

According to the 2007 Census, 60% of Eugene’s population in group quarters was in dormitories. Sixty percent of the 45 acres (27 acres) is assumed to be for dormitories. The University of Oregon reports that they have adequate land for new dormitories so no new land is needed for dormitories. Varying types of group quarters aside from dormitories are allowed in all residential plan designations. The remaining 40% of the group quarters need, 18 of these 45 acres, will be spread equally in the residential designations, with six acres in each LDR, MDR, and HDR.

67 This household size estimate is based on 2011 American Community Survey data about the number of occupied units with two or more units per structure (25,355 units) and the population living in structures with two or more units per structure (39,873 persons).
5 CONCLUSIONS

As shown in Table 68 below, the key findings from this Housing Needs Analysis are:

- Eugene has surplus of 10 Low Density Residential Acres
- Eugene has a surplus of 124 Medium Density Residential Acres
- Eugene has a deficit of 53 High Density Residential Acres

Table 68. Summary of all land deficit or surplus, Housing Needs Analysis Conclusion

<table>
<thead>
<tr>
<th>Plan Designation / Use</th>
<th>Land sufficiency (deficit) (gross acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Density Residential</td>
<td></td>
</tr>
<tr>
<td>New Housing</td>
<td>16</td>
</tr>
<tr>
<td>Group Quarters</td>
<td>-6</td>
</tr>
<tr>
<td>Public and Semi-Public Uses</td>
<td>TBD</td>
</tr>
<tr>
<td>Employment in Residential Plan Designations</td>
<td>TBD</td>
</tr>
<tr>
<td>Total Low Density Residential</td>
<td>10</td>
</tr>
<tr>
<td>Medium Density Residential</td>
<td></td>
</tr>
<tr>
<td>New Housing</td>
<td>130</td>
</tr>
<tr>
<td>Group Quarters</td>
<td>-6</td>
</tr>
<tr>
<td>Public and Semi-Public Uses</td>
<td>TBD</td>
</tr>
<tr>
<td>Employment in Residential Plan Designations</td>
<td>TBD</td>
</tr>
<tr>
<td>Total Medium Density Residential</td>
<td>124</td>
</tr>
<tr>
<td>High Density Residential</td>
<td></td>
</tr>
<tr>
<td>New Housing</td>
<td>-47</td>
</tr>
<tr>
<td>Group Quarters</td>
<td>-6</td>
</tr>
<tr>
<td>Public and Semi-Public Uses</td>
<td>TBD</td>
</tr>
<tr>
<td>Employment in Residential Plan Designations</td>
<td>TBD</td>
</tr>
<tr>
<td>Total High Density Residential</td>
<td>-53</td>
</tr>
</tbody>
</table>

Note: For TBD estimates, see the Residential Land Supply conclusion in Part III of this Study

These figures are not the final determinations of the City’s residential land supply or deficit. In the following Part III of the Residential Land Supply Study, the City analyzes the impacts of public and semi-public uses on residential land. In the Economic Opportunities Analysis section of the City’s Envision Eugene Employment Land Supply Study, the City analyzes the impacts of employment uses on residential land. After consideration of these impacts on the capacity of Eugene’s residential land, the City’s 20-year residential land needs are determined and indicated in the conclusion of Part III of the Envision Eugene Residential Land Supply Study: “Public and Semi-Public Uses on Residential Land (2012-2032).”
In Part IV of the Envision Eugene Residential Land Supply Study: “Measures to Increase Residential Development,” the City explains the efficiency measures it has taken to increase its supply of land capacity of residential land inside its UGB. Part V, “Final Residential Land Supply (2032), sums up the analysis in all of the preceding sections to reflect the final 20 year land supply.
Part III. Other Uses on Residential Land (2012-2032)

Part III includes the following sections and tables:
1. Introduction
2. Historical Public and Semi-Public Land Uses
3. Public and Semi-Public Land Needs
4. Summary of Public Land Uses on Residential Land
5. Summary of 2012 Residential Land Supply After Public Need Deductions
6. 2012 Residential Land Supply Conclusions

Table 1. Where Public and Semi-public Demand Will be Met Inside the Current UGB on Residential Land, in gross acres, 2012-2032
Table 2. Estimate of Public Land Need on Residential Land, inside the current Eugene UGB, gross acres, 2012-2032
Table 3. Summary of Residential Land Supply After Deductions for Other Uses, in gross acres, 2012-2032

1. Introduction

This Part addresses the other uses, such as the 20-year public and semi-public land uses and employment uses, which are likely be located on residential land inside the urban growth boundary (UGB). These uses displace capacity for housing that would otherwise occur on the residential land identified in Part I of this Study, and this loss must be factored into the supply / demand analysis of residential lands. Using the analysis below, the amount of residential capacity lost due to accommodating public uses or employment uses on residential land can to be accounted for when determining the capacity of residential land (see summary section).¹

2. Historical Public and Semi-Public Land Uses

Cities need to plan for public and semi-public facilities such as schools, governments, churches, parks, and other non-profit organizations that will expand as population increases. For the purpose of estimating land needed for these uses, land is classified into four categories:

- **Land needed for public operations and facilities.** This includes lands for City offices and maintenance facilities, county facilities, state facilities, federal facilities, and other related public facilities.

¹ All acreage estimates are rounded to the nearest whole number. For exact acreage estimates see the Summary of Public Facilities and Operations Land Needs and Park-By-Park Methodology documents in the Technical Support portion of the record.
- **Land needed for parks and open space.** This includes all land for publicly-owned park and open space use within the Eugene UGB.
- **Land needed for schools.** This includes 4J and Bethel school districts’ plans for new schools by general location within the City and potential plans for selling surplus school properties.
- **Land needed for semi-public uses.** This includes land for churches, non-profit organizations, and related semi-public uses.

3. Public and Semi-Public Land Needs

This section summarizes the forecast of needed public and semi-public land on residential land in Eugene for the planning period 2012-2032. Table 1 summarizes where the 143 acres of public and semi-public demand will be met on land in residential designations inside the UGB:

Table 1. Where Public and Semi-public Demand Will be Met Inside the Current UGB on Residential Land, in gross acres, 2012-2032

<table>
<thead>
<tr>
<th>Plan Designation</th>
<th>Storm-water</th>
<th>Waste-water</th>
<th>Building Facilities</th>
<th>Fire Water</th>
<th>EWEB</th>
<th>University of Oregon</th>
<th>City of Eugene Parks</th>
<th>School Districts</th>
<th>Total (rounded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Density Residential</td>
<td>18</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>Medium Density Residential</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>High Density Residential</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>0</td>
<td>1.5</td>
<td>30</td>
<td>91</td>
<td>0</td>
<td></td>
<td></td>
<td>143</td>
</tr>
</tbody>
</table>

The 143-acre public land need on residential land is based on the following assumptions:

- **Public operations and facilities** may be smaller in the future than the current level of service (6.7 gross acres per 1,000 people²) because Eugene already has most of the large public facilities the City is likely to need over the 20-year planning period.
 - Recently built **public facilities** include: a new Federal building, a new Library, a new site for EWEB (Eugene Water and Electric Board) facilities, new fire and emergency facilities and a new police station. The City anticipates building a new city hall on publicly owned property.
 - The community may need some new, smaller public facilities over the 20-year period that will require City land acquisition or easements on land. Review of City of Eugene master plans and capital improvement project lists identify several smaller

² From Lane County Tax Assessor data regarding property within public and semi-public ownership. See Eugene Comprehensive Lands Assessment, Table D-1 in the Technical Support portion of the public record for more information.
infrastructure facility projects that are planned to occur within the 20-year planning period to address stormwater, wastewater and fire needs, totaling a need for just over 22 acres of residential land inside the UGB. The majority of the 22 acre needed is for stormwater facilities (21 acres), specifically for 18 acres on Low Density Residential land and 3 acres on Medium Density Residential land, the balance being 1.5 acres for fire stations. Note that specific utility needs that might occur within the right-of-way of new development (e.g. roads, utility lines) are already accounted for in the density assumptions used to determine the capacity of the buildable lands inventory and are therefore not included in this estimate.4

- The University of Oregon anticipates no or an insignificant amount of student growth for the next 20 years.5 The University also has a goal of providing on-campus housing for 25% of its underclassmen. To that end, the University plans to add 1,250 additional beds during the planning period which can be accommodated on the existing campus.6

The University also forecasts a need for 45 acres of land adjacent to the main campus and the Autzen Stadium complex for non-residential uses. Some lands near these two locations that are suitable for university expansion are currently in the High Density Residential plan designation. Based on how much land around these areas is designated High Density Residential, the need is estimated to be 30 acres of High Density Residential land (the other 15 acres is from non-residential plan designations).7

- Lane County, EWEB, and the University of Oregon indicated that they do not have land that they classify as surplus land at this time.8

3 Smaller public facility needs were identified through review of the following: the City of Eugene stormwater basin plans for stormwater, the 2013 Capital Improvement Projects list for buildings and transportation, the Wastewater Master Plan and Public Facilities Plan for wastewater, the 2010-2015 Capital Improvement Projects list for fire stations, and November 2011 correspondence with Brad Taylor, Water Planning Supervisor from the Eugene Water and Electric Board for water.

4 Specifically, the employment density assumptions used in the buildable lands analysis are adjusted to account for road and utility needs that would occur within the right-of-way of development; e.g. a net-to-gross conversion factor is applied to the density assumption.

5 This information was provided by JP Monroe, Director of Institutional Research at the University of Oregon in an interview on May 9, 2013.

6 This was provided by Chris Ramey, University Architect and Associate Vice President of Campus Planning and Real Estate at the University of Oregon in an interview on May 8, 2013, and the University of Oregon Residential Hall Modernization Study, 2011, pages 6 and 7.

7 This information was provided by Chris Ramey, University Architect and Associate Vice President of Campus Planning and Real Estate at the University of Oregon in an interview on May 8, 2013. No distinction was made regarding whether the land needed is developed or vacant because in either scenario, the University use would be displacing either existing or future capacity that needs to be accounted for.

8 City staff asked staff at public agencies in Eugene about surplus land. Chris Ramey, Associate Vice President at the University of Oregon, said that the University does not expect to have surplus land over the 20-year planning period. EWEB staff indicate that the agency does not currently have land that is designated as surplus. Staff at Lane County indicate that the County does not currently have plans to surplus County properties, including the Lane County Fairgrounds.
- Table 1 is a summary of the amount of residential land needed for new public operations and facilities inside the UGB. The acreage needed inside the UGB reduces the 2012 residential land supply’s capacity as reflected in the Conclusion section, below.

- Park land need determinations use the projects identified in the Parks, Recreation & Open Space (PROS) Project and Priority Plan as guidance for anticipated future park need. This plan was adopted as a fiscal plan related to system development charges in 2006 and identifies acquisition and development priorities for a population consistent with that identified in Envision Eugene. The City’s park land need is discussed in greater detail in its findings documents, specifically addressing the need for an expansion to accommodate the need for two new community parks. Approximately 95 acres inside the UGB will be required for park land that might otherwise be used for residential or employment uses. As the City’s need for park land relates to the 2012 Residential Buildable Land Inventory, based on the locations of the needed park land, about 90 acres will be on Low Density Residential land and 1 acre will be on Medium Density Residential land (the remainder of the 95 acres will be on employment land).

- School land needs are based on the estimate of land need provided by the school districts. The City’s school land need is discussed in greater detail in its findings documents, addressing the need for an expansion to accommodate the need for one new school site for the Bethel School District. Neither the 4J School District nor the Bethel School District anticipates a need for a new school facility inside the current UGB over the 2012 to 2032 period. The 4J School Board has identified three sites (47.9 acres) as surplus inside the UGB: Dunn / Opportunity Center (4.5 acres), Bailey Hill (5.6 acres), and Coburg Farm (28.0 acres). The District may sell, trade, or lease these properties at some time in the future. These sites were addressed in Part I of this Study. The Bethel School District does not have surplus property.

- The need for Semi-public uses is forecast to be similar to historical needs, at about 1.3 acres per 1,000 people or 44 gross acres over the 20-year period; 29 in Low Density Residential and 15 in Commercial plan designations. Current trends have resulted in many semi-public uses (e.g. religious organizations) accommodating their growth on their existing property rather than requiring additional land. The Envision Eugene Technical Resource Group reviewed several parcels with existing semi-public uses and found that many of these sites that have not yet expanded appear to have room for a building expansion. Therefore, the entire need is anticipated to be accommodated through redevelopment and infill and not require any additional land.

4. Summary of Public Land Uses On Residential Land

9 The PROS Project and Priority Plan was adopted as a fiscal plan and not as a land use plan nor as part of the local comprehensive plan. However, it provides the most detailed analysis for potential future park acquisition needs, so it is reasonable to estimate future acquisition needs using the PROS Project and Priority Plan list.

10 This information was provided by Barb Bellamy, Communications Director at 4J in an interview on August 21, 2012.

11 This information was provided by Pat McGillivray, Communications Relations for the Bethel School District in an interview on March 12, 2009.
The following Table 2 summarizes the public land uses that will be accommodated on residential land inside the UGB.

Table 2. Estimate of Public Land Need on Residential Land, Eugene UGB, gross acres, 2012-2032

<table>
<thead>
<tr>
<th>Type of Use</th>
<th>Estimated need inside UGB on residential land 2012-2032</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Facilities and Operations</td>
<td></td>
</tr>
<tr>
<td>City/EWEB</td>
<td>22</td>
</tr>
<tr>
<td>University of Oregon</td>
<td>30</td>
</tr>
<tr>
<td>Parkland needed inside the current UGB</td>
<td>91</td>
</tr>
<tr>
<td>Schools</td>
<td>0</td>
</tr>
<tr>
<td>Semi-public uses</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
</tr>
</tbody>
</table>

Source: 4J and Bethel School Districts, The University of Oregon, PROS Project and Priority Plan, EWEB staff, City of Eugene public facilities plans and City Public Works staff

5. Summary of 2012 Residential Land Supply After Public Need Deductions

The 143 acres needed to accommodate public uses on residential land equates to 143 acres of lost capacity for housing on residential land to be deducted from the 2012 residential land supply. The capacity of the 2012 residential land supply is discussed in the Housing Needs Analysis (HNA) at Part II of this Study as follows, and Table 3, below, summarizes the residential supply capacity after the public deductions:

- The HNA finds that Eugene has a surplus of 10 acres of Low Density Residential land. Accounting for the 109 acres of Low Density Residential land that is needed for public and semi-public land results in a deficit of 99 acres of Low Density Residential land.
- The HNA finds that Eugene has a surplus of 124 acres of Medium Density Residential. Accounting for the 4 acres of Medium Density Residential land that is needed for public and semi-public land results in a surplus of 120 acres of Medium Density Residential land.
- The HNA finds that Eugene has a deficit of 53 acres of High Density Residential land. Accounting for the 30 acres of High Density Residential land that is needed for public and semi-public land results in increasing the deficit for High Density Residential land to 83 acres.
6. 2012 Residential Land Supply Conclusions

The next step is to combine the analysis from Parts I, II, and III of this Study to identify whether the City’s baseline, 2012 residential land supply can accommodate the projected demands on residential land for the next 20 years if Eugene continues to develop according to recent trends and existing codes and programs. If the City has a deficit in residential land, the City is required by State law to take actions to accommodate the entire 20 year residential land demand.

Additionally, there are employment uses that occur on residential land such as home businesses and neighborhood commercial. Similar to public uses, the City must account for the housing capacity that employment uses displace on residential land. Part II of the Employment Land Supply Study\(^\text{12}\) documents the demand for employment uses on residential lands which are as follows:

- Six acres of Low Density Residential land
- Six acres of Medium Density Residential land
- Six acres of High Density Residential land

Based on the analysis in the preceding three parts of the Residential Land Study and the employment need on residential land identified above, as shown in Table 3 the City has:

- A deficit of about 133 acres of Low Density Residential land
- A surplus of about 109 acres of Medium Density Residential land
- A deficit of about 91 acres of High Density Residential land

\(^{12}\) See the Envision Eugene Employment Land Study, section 6.1.2 of Part II Economic Opportunities Analysis.
Table 3. Summary of Residential Land Supply After Deductions for Other Uses, in gross acres, 2012-2032

<table>
<thead>
<tr>
<th>Plan Designation</th>
<th>Land Sufficiency Gross Acres (deficit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Density Residential</td>
<td></td>
</tr>
<tr>
<td>2012 Land Supply</td>
<td></td>
</tr>
<tr>
<td>Vacant</td>
<td>1,216</td>
</tr>
<tr>
<td>Partially Vacant</td>
<td>790</td>
</tr>
<tr>
<td>Redevelopment</td>
<td>199</td>
</tr>
<tr>
<td>2032 Land Need</td>
<td></td>
</tr>
<tr>
<td>New Housing</td>
<td>2,189</td>
</tr>
<tr>
<td>Group Quarters</td>
<td>6</td>
</tr>
<tr>
<td>2032 Land Sufficiency</td>
<td>10</td>
</tr>
<tr>
<td>2032 Public and semi-public demand</td>
<td>109</td>
</tr>
<tr>
<td>2032 Employment in Residential Plan Designations</td>
<td>34</td>
</tr>
<tr>
<td>Preliminary Land Sufficiency Conclusion</td>
<td>(133)</td>
</tr>
<tr>
<td>Medium Density Residential</td>
<td></td>
</tr>
<tr>
<td>2012 Land Supply</td>
<td></td>
</tr>
<tr>
<td>Vacant</td>
<td>201</td>
</tr>
<tr>
<td>Partially Vacant</td>
<td>212</td>
</tr>
<tr>
<td>Redevelopment</td>
<td>21</td>
</tr>
<tr>
<td>2032 Land Need</td>
<td></td>
</tr>
<tr>
<td>New Housing</td>
<td>304</td>
</tr>
<tr>
<td>Group Quarters</td>
<td>6</td>
</tr>
<tr>
<td>2032 Land Sufficiency</td>
<td>124</td>
</tr>
<tr>
<td>2032 Public and semi-public demand</td>
<td>4</td>
</tr>
<tr>
<td>2032 Employment in Residential Plan Designations</td>
<td>11</td>
</tr>
<tr>
<td>Preliminary Land Sufficiency Conclusion</td>
<td>109</td>
</tr>
<tr>
<td>High Density Residential</td>
<td></td>
</tr>
<tr>
<td>2012 Land Supply</td>
<td></td>
</tr>
<tr>
<td>Vacant</td>
<td>49</td>
</tr>
<tr>
<td>Partially Vacant</td>
<td>26</td>
</tr>
<tr>
<td>Redevelopment</td>
<td>23</td>
</tr>
<tr>
<td>2032 Land Need</td>
<td></td>
</tr>
<tr>
<td>New Housing</td>
<td>144</td>
</tr>
<tr>
<td>Group Quarters</td>
<td>6</td>
</tr>
<tr>
<td>2032 Land Sufficiency</td>
<td>(53)</td>
</tr>
<tr>
<td>2032 Public and semi-public demand</td>
<td>30</td>
</tr>
<tr>
<td>2032 Employment in Residential Plan Designations</td>
<td>8</td>
</tr>
<tr>
<td>Preliminary Land Sufficiency Conclusion</td>
<td>(91)</td>
</tr>
</tbody>
</table>
Given that the City’s analysis shows that Eugene does not have enough land under current conditions to accommodate all of the demands for Low Density Residential or High Density Residential land, the City is required to attempt to take measures to increase the likelihood that residential development will occur at densities sufficient to accommodate these remaining demands. These actions are discussed in Part IV of the Residential Land Supply Study (Measures to Increase Residential Development).
Part IV. Measures to Increase Residential Development (2012-2032)

Part IV includes the following sections and tables:
1. Information and Assumptions
2. List of Measures and Analysis
3. Conclusion

Table 1. Re-designations for Low Density Residential Housing, acres and dwelling capacity estimate
Table 2. New Secondary Dwelling Units Created through Efficiency Measures, 2012-2032
Table 3. Additional Capacity of Vacant and Partially Vacant Medium Density Residential Land 0.5 acres or Larger in Size, City-wide in dwellings
Table 4. Medium Density Residential Affordable Housing Site Capacity
Table 5. Residential Land Supply After Measures to Increase Development, in gross acres, 2012-2032

1. Information and Assumptions

The next step in establishing a 2012-2032 Residential Buildable Lands Inventory is to identify any new capacity that can be created through efficiency measures. This part of the Residential Land Supply Study provides more information about the measures the City has taken to add housing capacity within the 2012 urban growth boundary (UGB). These measures increase the number of homes that can fit inside our current UGB by using regulatory changes (e.g. zone changes), programs or development incentives to achieve more housing than Eugene would otherwise see under current development trends.

After reviewing numerous potential measures, those strategies pursued by Eugene (outlined below) were selected based on several key factors. First the City already has several codes and programs in place that facilitate compact development. In 2001 the City adopted extensive changes to Eugene Code Chapter 9, Land Use. These amendments included several provisions that require or allow land to be used more efficiently. The City also has existing programs that help facilitate denser urban development, such as tax increment financing downtown. The efficiency measures attempt to balance the efficiency of compact urban growth with concerns about livability and compatibility by focusing incentives primarily on redevelopment of the city core for multi-family housing, and re-designating residential lands inside the UGB to reflect the City’s desired compact development form. These strategies reflect the guiding pillars and strategies of the Envision Eugene Recommendation (2012) and subsequent City Council direction.

The following includes a list of quantifiable measures Eugene has taken to increase the supply of residential land or increase the residential capacity of that land since the 2012 Residential Land Supply (Part I of this Study) and HNA (Part II of this Study) were prepared. The assumptions and methods used to determine their effect on the land need are detailed below for each of the actions taken. Efficiencies gained are shown for each, and shown together in the Conclusion and Table 5.

1 These existing measures and programs are documented in Existing Land Use Efficiency Measures in the Technical Support portion of the public record.
2. List of Measures and Analysis

1. Re-designation of Land to Low Density Residential Designation

Applicability: Portions of the Crow Road Study Area south of W. 11th Avenue and east of Greenhill Road, the Irving Road site (former Eagles Lodge) and the Gilham Road site. The Crow Road Study Area and the Gilham Road site were previously designated Medium Density Residential and the Irving Road site was previously designated Parks and Open Space. Some of these areas were identified as vacant or partially vacant sites on the City’s 2012 Residential Land Supply in Part I of this Study.

Assumptions: Re-designation of vacant and partially vacant land2 from Medium Density Residential (MDR) or Parks and Open Space (POS) designations to Low Density Residential (LDR) will add capacity for Low Density Residential housing. The estimate of new LDR capacity gained and the MDR capacity lost are based on the average density assumptions for the plan designation, slope, and size of the sites as identified in Tables 10 and 11 of Part I of this Study, Residential Land Supply. Capacity of partially vacant sites excludes the portion with exiting development from future capacity, consistent with section 4.1 of the Housing Needs Assessment in Part II of this Study.

Analysis: This measure re-designates about 211 acres to LDR accommodating 645 LDR dwelling units, and requires 1,833 MDR dwellings to be accommodated elsewhere as shown in Table 1.

Table 1. Re-designations for Low Density Residential Housing, acres and dwelling capacity estimate

<table>
<thead>
<tr>
<th>West Eugene- Crow Road Study Area</th>
<th>Acres for re-designation from MDR or POS</th>
<th>MDR du lost</th>
<th>LDR du added</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Low Density Residential</td>
<td>174.1 ac</td>
<td>-1,730 du</td>
<td>561 du</td>
</tr>
<tr>
<td>To Commercial</td>
<td>10.3 ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilham Road</td>
<td>9.6 ac</td>
<td>-103</td>
<td>38 du</td>
</tr>
<tr>
<td>Irving Road / Eagles</td>
<td>16.9 ac</td>
<td>0 du</td>
<td>32 du</td>
</tr>
<tr>
<td>Total</td>
<td>211 ac</td>
<td>1,833 du</td>
<td>645 du</td>
</tr>
</tbody>
</table>

Acres (ac), dwellings (du)
Low Density Residential (LDR), Medium Density Residential (MDR), Parks and Open Space (POS)

2 The Crow Road Study Area includes vacant, partially vacant and developed land. The Gilham Road site is vacant. The Irving Road/Eagles site is partially vacant with about 9 acres excluded from available capacity due to existing development.
Timing: The City Council adopted the re-designation of the 211 acres of MDR to Low Density Residential or Commercial on July 9, 2014, and it became effective 30 days later. The City’s
action was acknowledged by the Oregon Department of Land Conservation and Development pursuant to ORS 197.625(1)(a).

- **Efficiency Gained**: 645 dwelling units of Low Density Residential. The reduction to the Medium Density Residential land capacity is reflected in Table 5 below.

2. Permit fee Reductions for Secondary Dwelling Units (Low Density Residential)

This measure provides efficiencies on land classified as developed, as well as vacant and partially vacant land. SDUs (a.k.a. “granny flats” or “accessory dwellings”) are additional dwellings that are attached to or detached from the primary dwelling but located on the same lot, on property zoned R-1 Low Density Residential.

Applicability: Increase the frequency at which SDUs occur in Low Density Residential areas by restructuring permitting fees.

Assumptions: SDUs are already permitted in Low Density Residential zones. It is assumed that decreasing the systems development charges for SDUs could increase production of SDUs by some amount. This assumption is, in part, based on the fact that Eugene does not have enough housing that is affordable to lower income households, suggesting that there would be demand for SDUs as smaller housing types in existing developed areas that could be more affordable. Over the 2001-2012 period, Eugene averaged about 8.4 SDUs per year. A reasonable assumption is that SDU production would increase by 50%.

Analysis: With an average of an additional four SDUs produced per year, this measure would result in about 84 additional SDUs produced over the 20 year period. Estimated savings of about 21 acres.

Table 2. New Secondary Dwelling Units Created through Efficiency Measures, 2012-2032

<table>
<thead>
<tr>
<th>20 year Baseline</th>
<th>20 year Efficiency Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total city-wide SDUs in LDR or R-1 in 2001-2012</td>
<td>Efficiency Measures</td>
</tr>
<tr>
<td>Deduction for single-family code amendments</td>
<td>Net new SDUs in LDR or R-1 2001-2012</td>
</tr>
<tr>
<td>119</td>
<td>-18</td>
</tr>
</tbody>
</table>

*Amendments to the zoning code were adopted after 2012 that added restrictions to SDUs. These SDU restrictions were related to interim protection measures for areas around the University of Oregon, increasing the minimum lot size for an SDU to 6,100 square feet, and adding restrictions on flag lots. Those 2001-2012 SDUs that might not have met these new standards were deducted from the total so that the forecast does not assume that SDUs on those lots covered by the interim protection measures would occur in the future.

3 This accounts for the decrease in SDUs on an annual basis due to interim protection measures adopted after 2012 for areas around the University of Oregon.
Example: Under the current fee structure, an SDU is charged slightly less than a standard single-family dwelling. SDUs are typically smaller in size having less impact on sanitary and storm infrastructure than a typical single-family residence. Restructuring of the SDCs can better recognize the reduced impacts of SDUs and result in an increase in the frequency that they occur. The additional dwelling unit is accommodated without additional land demand.

Timing: Systems Development Charges (SDC) costs are currently under review (2016). SDCs for each type of system (e.g. transportation, wastewater, stormwater, parks) will be reviewed separately over the next few years.

- **Efficiency Gained:** 84 dwelling units of Low Density Residential.\(^4\)

3. R-2 Medium Density Residential Zone Code Amendments

Applicability: Increase the minimum density required in the R-2 zone. Applies to land zoned R-2 Medium Density Residential or that is designated Medium Density Residential and could be rezoned to R-2.

Assumptions: The R-2 zone allows a minimum density of 10 dwellings per net acre.\(^5\) Review of the average densities seen on Low Density Residential land in the 2012 residential land supply analysis showed that single-family detached housing is the lowest density housing type seen on Medium Density Residential land at 7.9 dwellings per net acre. Increasing the required minimum density would raise the average density of lower density homes (e.g. single-family detached homes), thereby increasing the overall average density seen in Medium Density Residential.

Analysis:

Average Density Needed

Using the Envision Eugene Land Sufficiency Model to test what average density would be needed on Medium Density Residential land to accommodate the remaining medium density need of 614 dwellings, the City found the average needed to be 15.4 dwellings per net acre.\(^6\) This can be achieved when the average density of the lower density housing types is increased. When single-family detached housing is increased from 7.9 to 12.8 dwellings per net acre on medium density land, the overall average density seen on medium density land increases to 15.4 dwellings per net acre. Again, using the Envision Eugene Land Sufficiency Model, when an average of 15.4 dwellings per net acre is assumed on medium density residential land, the projected capacity on vacant and partially vacant MDR land is estimated to increase by about 630 dwellings.

The City also identified some exemptions to the new density to allow smaller vacant or partially vacant lots to develop with single-family detached at the lower densities we are currently

\(^4\) Changes in SDCs would clearly boost the number of SDUs seen in LDR annually. However, this efficiency measure is not necessary to meet the City’s residential needs as there is a surplus in LDR excess of the 84 dwellings gained.

\(^5\) “Net” density is the number of units per acre excluding non-buildable land such as land for roads. See Eugene Code Chapter 9 for definition.

\(^6\) For more information on the analysis associated with this measure, see the Technical Support portion of public record.
Deficit.

Examples include lots that have already been platted for single-family housing or smaller lots within existing single-family areas. The City Council directed staff to exempt sites less than 0.5 acre from the new density requirement. The buildable lands inventory was queried and identified 31 acres that are Medium Density Residential and less than 0.5 acres. As shown in Table 3, the additional capacity from the increased density is reduced to 566 dwellings when the new density is applied only to lots 0.5 acres or greater. This results in about 48 medium density dwellings (or 4.8 acres) remaining.

Table 3. Additional Capacity of Vacant and Partially Vacant Medium Density Residential Land 0.5 acres or Larger in Size, City-wide in dwellings

<table>
<thead>
<tr>
<th>New Capacity Created (all sizes)</th>
<th>Capacity under current density</th>
<th>Capacity under new density</th>
<th>Difference in Capacity</th>
<th>New Capacity > .5 ac</th>
<th>Unmet need</th>
<th>Deficit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acres of BLI ≤ .5 ac</td>
<td>DU</td>
<td>Ac</td>
<td>Du</td>
<td>Acres of BLI < .5 ac</td>
<td>DU</td>
</tr>
<tr>
<td>628</td>
<td>41</td>
<td>15.</td>
<td>13.4</td>
<td>5</td>
<td>31</td>
<td>4</td>
</tr>
</tbody>
</table>

DU = dwelling, AC = acre

Therefore, even with exempting Medium Density Residential lots less than 0.5 acres from the new density requirement, the remaining medium density need would be almost entirely met.

In order to facilitate the increase in average density to 15.4, the R-2 zone must be amended. The minimum density would need to be 12.8 but because the Eugene Land Use Code Chapter 9 provides minimum and maximum densities based on whole numbers rather than fractions of numbers, the City proposes a minimum density of 13. This would address the small amount of remaining need (48 dwellings).

Other considerations

Although 15.4 dwellings per net acre is already within the allowable density of R-2 zoning (10-28 dwellings per net acre), the City considered whether the remaining land supply is too constrained to support this change and whether there are examples of R-2 subdivisions already meeting this density. Review of the MDR vacant and partially vacant land supply indicates that most of the supply (82%) is on land with less than 5% slope. The next highest slope category is 10-15% slope, at 13% of the supply. Therefore, the slopes of the MDR land in the buildable lands inventory do not initially appear to be a limiting factor for requiring single-family detached housing to be developed at a higher density.

Review of R-2 zoned subdivision plats found that about half of the plats approved from 2001-2014 would need to add a significant amount of additional units to meet the targeted net density for single-family detached development. The other plats either already meet the target net density, would need to increase the number of lots by less than 15%, or were part of a planned unit development which allows for more flexibility in meeting development standards.

Timing: Amendments to the R-2 Medium Density Zoning Code are proposed with the adoption of this Residential Land Supply Study.
➢ **Efficiency Gained:** 614 medium density residential dwellings, or about 57.4 acres of capacity.

4. **Affordable Housing Land Bank Program (Medium Density Residential)**

This measure affects certain vacant land sites. This assumes a continuation of the City’s affordable housing land bank program where property is bought by the City and then sold at below market value to an affordable housing provider with a track record of providing successful affordable housing developments in the community.

Applicability: The City owns one undeveloped land bank site.7

Assumptions: While the site is designated Medium Density Residential, the site is classified in the land model as committed because it is in public ownership and no housing capacity is allocated to it. However, as part of the City’s affordable housing land bank program, housing capacity can be assumed for the site. The capacity assumption for the site is based on the average assumed density for Medium Density Residential land at 10.7 dwellings per gross acre (du/ac).

<table>
<thead>
<tr>
<th>Table 4. Medium Density Residential Affordable Housing Site Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Acres</td>
</tr>
<tr>
<td>1 Medium Density Residential Site</td>
</tr>
</tbody>
</table>

Analysis: An average of 10.7 dwellings per acre for about 5 acres equates to Medium Density Residential savings of about 55 dwellings.

Timing: No additional action is needed.

➢ **Efficiency Gained:** 55 dwelling units of Medium Density Residential or about five Medium Density Residential acres.

5. **High Density Residential Downtown Redevelopment Strategy (Programs and Development Incentives)**

Applicability: Downtown area.

7 This is not meant to be an exhaustive list of the sites the City will have in the program in the future, it is simply the amount of land the City has in the program at the time of this analysis. The City adds property to its land bank program as opportunities arise.
Assumptions: The City has taken actions to increase residential housing downtown which will accommodate the remaining 1,003 High Density Residential need.

Analysis: These include:

- Adoption of the revised Multiple Unit Property Tax Exemption (MUPTE) program for the downtown. The redevelopment estimating tool analysis results show that some combination of investment tools, for example MUPTE, tax-funded SDCs, below-market-rate sales and leases of government-owned property, and reductions in parking requirements, will be needed to achieve the community’s redevelopment target.

- The Riverfront Special Area Zone and focused efforts on the EWEB (Eugene Water and Electric Board) downtown riverfront site. The zone was adopted by Council in 2013. Prior to the special area zone adoption, a market analysis was completed during the master planning process that suggests redevelopment of this site has the potential to accommodate up to 404 dwellings. Other efforts focused on this site include project coordination, permit facilitation and park and infrastructure commitments.

- Downtown Development Opportunity Areas. The Eugene Downtown Plan listed a “Dozen Downtown Development Opportunity Areas,” locations appropriate for redevelopment to high levels of density and activity. The list is being updated to reflect recent development and new opportunities. City staff played a significant role in these projects, including financing, project coordination, design review and permit facilitation and will continue these efforts on the new sites.

- In addition to the projects listed as downtown opportunity areas, staff has provided financial assistance to more than 20 businesses downtown, creating a more walkable and livable core area that is likely to support more private investment in housing.

The likelihood of accommodating all of the high density residential deficit downtown is demonstrated by the recently adopted MUPTE program and (EWEB) Riverfront Special Area Zone, the history of success in focused efforts and investment tools on downtown redevelopment shown on the updated Downtown Development Opportunity Areas list, the continuation of other programs that have provided financial assistance to businesses downtown, and in both the existing physical capacity and market feasibility of additional high density housing with investment tools.

Timing: No actions needed.

- Efficiency Gained: See “Efficiency Gained” under Measure 7, below.

6. Downtown & Mixed Use Code Amendments (High Density Residential)

Applicability: C-2 Community Commercial Zone, C-3 Major Commercial Zone (downtown), /ND Nodal Development Overlay Zone, and /TD Transit Oriented Development Overlay Zone.

8 See Technical Support portion of the public record for more information on the programs and incentives to increase housing downtown mentioned here.
Assumptions: The goal of these amendments is to facilitate compact urban development in downtown, on key transit corridors, and in core commercial areas, consistent with Envision Eugene. The amendments address this as follows:

Surface Parking Limitation. The goal of this amendment is to provide flexibility for redevelopment sites within downtown by allowing up to 20 additional surface parking spaces for sites where all vehicle access is via an alley, and removing the prohibition on stand-alone surface parking lots.

Large Commercial Facilities Standards. The goal of this amendment is to ensure that development standards applicable to downtown developments are appropriate for a high quality urban setting by exempting downtown developments from certain large commercial facility standards.

Commercial Landscaping Standards. The goal of this amendment is to make the commercial landscaping standards align with desired urban development and a pedestrian-oriented streetscape design by reducing the minimum landscape area requirement downtown and removing the required width for front yard landscape beds.

Nodal Development Overlay Zone. The goal of this amendment is to provide flexibility while adding clarity, in application of these standards by allowing for all properties to seek adjustments to the development standards, by adding relevant adjustment review criteria, and by clarifying applicability of the standards.

Traffic Impact Analysis/Level of Service in Downtown. The goal of this amendment is to provide clarity in the expected outcome for property owners and affected community members by remove the TIA requirement and reduce the allowed level of service for projects within the Downtown Plan area, with the exception of the properties subject to the EWEB master plan.

General Commercial Standards. The goal of these amendments is to simplify the structure of one section of the land use code. Section headings and subheadings are simplified and clarified.

Analysis: These code amendments clearly make it easier to do development downtown. They are part of the City’s overall program to help facilitate more jobs and housing downtown.

Timing: The City Council adopted the package of code/plan amendments on July 22, 2013, and they become effective August 24, 2013. The City’s action was acknowledged by the Oregon Department of Land Conservation and Development pursuant to ORS 197.625(1)(a).

Efficiency Gained: See “Efficiency Gained” under Measure 7, below.

7. Downtown Riverfront Special Area Zone (High Density Residential)

Applicability: The new Downtown Riverfront Special Area Zone, intended to support the creation of an active, vibrant, people place, along Eugene’s downtown riverfront intended to achieve an appropriate balance between redevelopment certainty and flexibility, to further
economic development, incorporate educational aspects, support appropriate enhancement of riverfront habitat and promote a mix of uses that complement and support existing downtown riverfront uses.

Assumptions: This new special area zone applies to about 27 acres of land on the east side of downtown, along the riverfront (also known as the Eugene Water and Electric Board riverfront site). Consistent with Envision Eugene’s goal of compact urban development and accommodating more multi-family homes and jobs inside the current UGB, City staff provided support to the Eugene Water and Electric Board’s (EWEB) design staff and a nine-member Community Advisory Team for development of the EWEB Riverfront Master Plan. The new special area zone for the site is intended to implement the plan.

Analysis: The EWEB riverfront site has been and will continue to be the focus of several City resources and tools in order to help facilitate redevelopment of the site. These include the site currently sitting within both the newly adopted Multiple Unit Tax Exemption (MUPTE) boundary and the urban renewal district, adoption of the Riverfront Special Area Zone for the EWEB site, project coordination assistance, permit facilitation, and commitments to park and infrastructure improvements. The EWEB redevelopment scenarios for the site include different scenarios. Depending on how it is developed, if the development includes a residential focus the range is estimate to be about 250-450 dwellings.9

Timing: The City Council adopted the Downtown Riverfront Special Area Zone on July 8, 2013. The City’s action was acknowledged by the Oregon Department of Land Conservation and Development pursuant to ORS 197.625(1)(a).

- **Efficiency Gained:** The primary efficiency measure tool is development incentives received under the MUPTE program. However the City finds that a programmatic approach is important and that together, Measures 5, 6 and 7 will accommodate 1,003 high density residential dwellings in the downtown, or about 47 acres10 of high density residential capacity.

3. Conclusion

Based on the measures above, the City has created additional capacity for residential land within its 2012 UGB. The capacity identified in the 2012 Residential Land Supply in Part I of this Study and the Housing Needs Assessment (HNA) in Part II of the Study, together with the capacity identified through these measures, determines whether the City has enough residential land for the next 20 years or whether it needs to expand its UGB to meet all of the residential demand.

10 The average densities seen in high density residential are 21.5 per gross acre. 1,003 high density dwellings divided by 21.5 is 46.7 acres.
Additional Capacity Factors

Additionally, there are a few other factors that impact the final remaining need. After the land supply model was run in 2012, in light of the boom in student housing development the TRG undertook an examination of how this would affect the multifamily redevelopment target that would be otherwise need to be addressed by the strategies above. Staff analyzed student housing redevelopment projects in the “pipeline” (planned and/or permitted but not yet completed as of 12/31/12) according to evidence such as permit records and staff consultations. Some of these also already received investment through existing City programs (e.g. MUPTE). The results indicate we can expect an additional 943 (618 on Commercial land and 325 on High Density Residential land), to be built in the near future.11

Also after the land supply model was run, in 2014 the City’s zoning code was amended to include interim protection measures for areas around the University of Oregon.12 Given the small amount of vacant and partially vacant land in this area, the impact of the code amendments was determined to be a decrease in about 7 dwellings of Low Density Residential land capacity.

As shown in the following table, the capacity identified on the 2012 Residential Land Supply and in the HNA together with the above measures and additional capacity factors results in:

- The demand for Low Density Residential land is met. The measures create a small surplus of about 47 acres of Low Density Residential land.
- The demand for Medium Density Residential land is met.13
- The demand for High Density Residential land is met.

11 1,178 dwellings were found to be in the pipeline however about 235 of those were already estimated to occur on Franklin Boulevard or Downtown as part of the City’s baseline redevelopment estimate on Commercial land (see Part I of this Study regarding baseline redevelopment) so the result is an estimated 943 dwellings in the pipeline. For more information on the pipeline projects, see the Technical Support portion of the public record.12 The ordinance included prohibiting duplexes, rowhouses and flag lots in the south University and Fairmount neighborhoods. The impact on the potential capacity in these areas was based on how much of the city-wide forecast for these housing types could be proportionately allocated to the vacant, partially vacant or redevelopment capacity estimates for these areas. These single-family code amendments was adopted on July 28, 2014. The City’s action was acknowledged by the Oregon Department of Land Conservation and Development pursuant to ORS 197.625(1)(a).

13 While a small deficit is shown for Medium Density Residential, amending the code to a minimum density of 13 is rounded up from the minimum that would be required 12.8 and therefore accommodating the deficit.
Table 5. Residential Land Supply After Measures to Increase Development, in gross acres, 2012-2032

<table>
<thead>
<tr>
<th>Plan Designation</th>
<th>Gross Acres (deficit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Density Residential</td>
<td></td>
</tr>
<tr>
<td>2012 Land Supply</td>
<td></td>
</tr>
<tr>
<td>Vacant</td>
<td>1,216</td>
</tr>
<tr>
<td>Partially Vacant</td>
<td>790</td>
</tr>
<tr>
<td>Redevelopment</td>
<td>199</td>
</tr>
<tr>
<td>2032 Land Need</td>
<td></td>
</tr>
<tr>
<td>New Housing</td>
<td>2,189</td>
</tr>
<tr>
<td>Group Quarters</td>
<td>6</td>
</tr>
<tr>
<td>2032 Land Sufficiency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2032 Public and semi-public demand</td>
<td>109</td>
</tr>
<tr>
<td>2032 Employment in Residential Plan Designations</td>
<td>34</td>
</tr>
<tr>
<td>Preliminary Land Sufficiency Conclusion</td>
<td>(133)</td>
</tr>
<tr>
<td>Land Supply Gained from Measures to Increase Low Density Residential Housing</td>
<td>181</td>
</tr>
<tr>
<td>Redesignation to Low Density Residential</td>
<td>161</td>
</tr>
<tr>
<td>Permit fee reductions for secondary dwelling units</td>
<td>21</td>
</tr>
<tr>
<td>Lost capacity from interim protection measures</td>
<td>2</td>
</tr>
<tr>
<td>Final Land Sufficiency -- Surplus</td>
<td>47</td>
</tr>
<tr>
<td>Medium Density Residential</td>
<td></td>
</tr>
<tr>
<td>2012 Land Supply</td>
<td></td>
</tr>
<tr>
<td>Vacant</td>
<td>201</td>
</tr>
<tr>
<td>Partially Vacant</td>
<td>212</td>
</tr>
<tr>
<td>Redevelopment</td>
<td>21</td>
</tr>
<tr>
<td>2032 Land Need</td>
<td></td>
</tr>
<tr>
<td>New Housing</td>
<td>304</td>
</tr>
<tr>
<td>Group Quarters</td>
<td>6</td>
</tr>
<tr>
<td>2032 Land Sufficiency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>124</td>
</tr>
<tr>
<td>2032 Public and semi-public demand</td>
<td>4</td>
</tr>
<tr>
<td>2032 Employment in Residential Plan Designations</td>
<td>11</td>
</tr>
<tr>
<td>Preliminary Land Sufficiency Conclusion</td>
<td>109</td>
</tr>
<tr>
<td>Land Supply Gained from Measures to Increase Low Density Residential Housing</td>
<td>58</td>
</tr>
<tr>
<td>R-2 zone code amendments</td>
<td>53</td>
</tr>
<tr>
<td>Affordable housing landbank program</td>
<td>5</td>
</tr>
<tr>
<td>Land Supply Lost for Redesignation to Low Density Residential</td>
<td>171</td>
</tr>
<tr>
<td>Final Land Supply Sufficiency -- met</td>
<td>(4)</td>
</tr>
</tbody>
</table>
High Density Residential

<table>
<thead>
<tr>
<th></th>
<th>2012 Land Supply</th>
<th>2032 Land Need</th>
<th>2032 Land Sufficiency</th>
<th>2032 Public and semi-public demand</th>
<th>2032 Employment in Residential Plan Designations</th>
<th>Preliminary Land Sufficiency Conclusion</th>
<th>Land Supply Gained from Measures to Increase Low Density Residential Housing</th>
<th>Final Land Supply Sufficiency -- met</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacant</td>
<td>49</td>
<td>150</td>
<td>(53)</td>
<td>30</td>
<td>8</td>
<td>(91)</td>
<td>91</td>
<td>0</td>
</tr>
<tr>
<td>Partially Vacant</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Redevelopment</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>New Housing</td>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Group Quarters</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>(53)</td>
<td>30</td>
<td>8</td>
<td>(91)</td>
<td>91</td>
<td>0</td>
</tr>
</tbody>
</table>

Based on the City actions, Eugene's 2012 UGB includes a 20 year supply of land for housing. The full 20 year residential land supply is identified in Part V Residential Buildable Lands Inventory (2012-2032).
Part V. Residential Buildable Lands Inventory (2012-2032)

Part V includes the following section, table and figures:

Table 1. Vacant Residential Land, Eugene 2012-2032
Table 2. Vacant Acres or Lots of Residential Land by Category of Land, Eugene 2012-2032
Table 3. Partially Vacant Acres or Lots of Residential Land Category of Land, Eugene 2012-2032
Table 4. Residential Land, Baseline Redevelopment, Eugene 2012-2032
Table 5. Residential Capacity Method and Category of Land for Vacant and Partially Vacant Land, Eugene 2012-2032
Table 6. Residential Capacity Assumption and Category of Land for Vacant and Partially Vacant Land, Eugene 2012-2032
Table 7. Additional Residential Land Supply from Efficiency Measures and Pipeline Development, Eugene 2012-2032

Figure 1. Residential Lands Supply (2012-2032)
Figure 2. Residential Lands Supply (2012-2032) (tiles 1 through 10)

1. Final 2012-2032 Residential Buildable Lands Inventory

This final Part of the Residential Land Supply Study provides the 20-year Residential Buildable Lands Inventory (BLI) for Eugene. The BLI incorporates the changes made to the 2012 land supply by the Part IV Measures to Increase Residential Development.

As previously shown in Table 5 of Part IV, the addition of capacity from actions the City took to increase residential inside the UGB results in the following:

- The demand for Low Density Residential land is met. The measures create a small surplus of about 47 acres of Low Density Residential land.
- The demand for Medium Density Residential land is met.
- The demand for High Density Residential land is met.

The final BLI and acreage Tables 1-3 in this Part V reflect the changes in plan designations described in Part IV of this study (e.g. Crow Road area, Irving Road site, Gilham Road site). These changes are shown in the final 2032 Residential Buildable Lands Inventory maps, Figures 1 and 2.
Table 1. Vacant Residential Land, Eugene 2012-2032

<table>
<thead>
<tr>
<th>Plan Designation</th>
<th>Gross Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Density Res Mixed Use</td>
<td>1</td>
</tr>
<tr>
<td>High Density Residential</td>
<td>43</td>
</tr>
<tr>
<td>Low Density Residential</td>
<td>1,396</td>
</tr>
<tr>
<td>Medium Density Residential</td>
<td>161</td>
</tr>
<tr>
<td>Medium Density Res Mixed Use</td>
<td>0.7</td>
</tr>
</tbody>
</table>

As explained in the Housing Needs Analysis (HNA, Part II of this Study), there are three methods used to estimate residential development capacity of vacant and partially land. Two of the methods utilize the number of acres in the land supply and one utilizes the number of lots in the supply. Tables 2 and 3 show the vacant and partially vacant acres and lots for residential land, based on the size, slope and elevation factors that are used to, later, determine the residential capacity assumed for the land.

Table 2. Vacant Acres or Lots of Residential Land by Category of Land, Eugene 2012-2032

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900'</td>
<td>> 900'</td>
<td>All Elevations</td>
</tr>
<tr>
<td>< 5%</td>
<td>177 ac</td>
<td>768 lots</td>
<td>23 ac</td>
</tr>
<tr>
<td>≥ 5%</td>
<td>5 lots</td>
<td>115 lots</td>
<td>4 ac</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>120 ac</td>
<td>192 ac</td>
<td>40 ac</td>
</tr>
<tr>
<td></td>
<td>0 ac</td>
<td>49 ac</td>
<td>5 ac</td>
</tr>
<tr>
<td>5+ acre</td>
<td>168 ac</td>
<td>418 ac</td>
<td>65 ac</td>
</tr>
<tr>
<td></td>
<td>8 ac</td>
<td>123 ac</td>
<td>12 ac</td>
</tr>
</tbody>
</table>

Table 3. Partially Vacant Acres\(^1\) or Lots of Residential Land by Category of Land, Eugene 2012-2032

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900'</td>
<td>> 900'</td>
<td>All Elevations</td>
</tr>
<tr>
<td>< 5%</td>
<td>n/a</td>
<td>n/a</td>
<td>16.1 ac</td>
</tr>
<tr>
<td>≥ 5%</td>
<td>n/a</td>
<td>n/a</td>
<td>.3 ac</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>258.7 ac</td>
<td>255.1 ac</td>
<td>23.2 ac</td>
</tr>
<tr>
<td></td>
<td>2 ac</td>
<td>35 lots</td>
<td>2.1 ac</td>
</tr>
<tr>
<td>5+ acre</td>
<td>312.2 ac</td>
<td>170.4 ac</td>
<td>34.9 ac</td>
</tr>
<tr>
<td></td>
<td>0 ac</td>
<td>10 ac</td>
<td>21.6 ac</td>
</tr>
</tbody>
</table>

\(^*\) In parcels < 1 acre in LDR and HDR, this analysis applies to vacant land only. In parcels < 1 acre in MDR, this analysis applies to vacant land and partially vacant parcels 0.5 - < 1 acres.

\(^1\) As noted in section 4.1.3 of Part II, HNA, the BLI estimates of partially vacant land include entire sites, including the portions of the sites that are already developed. To determine the capacity of partially vacant land, the BLI acreage totals were adjusted, with a deduction for existing development on each site. A review of development on the partially vacant LDR lots identified a reasonable deduction for existing houses or structures on the lot as .33 ac on lots less than five percent slope, and .5 ac on lots with slopes of five percent or greater. Review of existing development on the MDR and HDR partially vacant lots identified a reasonable deduction for existing structures, parking, and open space on the lot as either .25 acre, .5 acre, or the approximate amount of the actual existing development if the existing development is over 1 acre. These adjusted acreage totals are reflected in Table 3.
As documented in the HNA (Part II of this Study)\(^2\), the City identified some additional development capacity to accommodate some housing on residential land that has existing development.

Table 4. Residential Land, Baseline Redevelopment\(^3\), Eugene 2012-2032

<table>
<thead>
<tr>
<th>Plan Designation</th>
<th>Dwellings</th>
<th>Gross Acres(^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low density residential- new lots baseline</td>
<td>627</td>
<td>157</td>
</tr>
<tr>
<td>Low density residential- SDU baseline</td>
<td>168</td>
<td>42</td>
</tr>
<tr>
<td>Medium Density Residential</td>
<td>220</td>
<td>21</td>
</tr>
<tr>
<td>High Density Residential</td>
<td>240</td>
<td>11</td>
</tr>
<tr>
<td>Commercial (HDR dwellings in Com)</td>
<td>256</td>
<td>12</td>
</tr>
</tbody>
</table>

As documented in Part I and Part II, the following capacity methods and densities shown in Tables 5 and 6 are used to estimate capacity on residential lands:

Table 5. Residential Capacity Method and Category of Land for Vacant and Partially Vacant Land, Eugene 2012-2032

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900'</td>
<td>> 900'</td>
<td>< 900'</td>
</tr>
<tr>
<td></td>
<td><5%</td>
<td>≥5%</td>
<td><5%</td>
</tr>
<tr>
<td>< 1 acre*</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5+ acre</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

*In parcels < 1 acre in LDR and HDR, this analysis applies to vacant land only. In parcels < 1 acre in MDR, this analysis applies to vacant land < 1 acre and partially vacant parcels 0.5 - < 1 acres. See Part II, Section 4, of this Study for information about capacity methods 1, 2 and 3.

\(^2\) See HNA section 4.2 for more information.

\(^3\) Baseline redevelopment is the natural amount of redevelopment expected to occur without additional actions taken by the City to encourage it, as opposed to redevelopment that is stimulated by City actions (e.g. because of enacting measures that increase residential development). Table 4 shows the amount of baseline redevelopment potential on residential land. See also Table 7 for additional capacity created through efficiency measures.

\(^4\) Derived from City-wide density averages identified in the Table 67 of the HNA, Part II of this Study; 4 dwellings per acre in Low Density Residential, 10.7 dwellings per acre in Medium Density Residential, and 21.5 dwellings per acre in High Density Residential.
Table 6. Residential Capacity Assumption and Category of Land for Vacant and Partially Vacant Land, Eugene 2012-2032

<table>
<thead>
<tr>
<th>Slope</th>
<th>Low Density Residential</th>
<th>Medium Density Residential</th>
<th>High Density Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 900'</td>
<td>> 900'</td>
<td>All Elevations</td>
</tr>
<tr>
<td></td>
<td><5%</td>
<td>≥5%</td>
<td><5%</td>
</tr>
<tr>
<td>< 1 acre</td>
<td>5.2</td>
<td>1 per lot</td>
<td>1 per lot</td>
</tr>
<tr>
<td>1-5 acre</td>
<td>4.6</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>5+ acre</td>
<td>4</td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Dwellings per gross acres of land, or number of dwellings per lot.
(V) means the capacity assumption applies to vacant land only in this land category.
(PV) means the capacity assumption applies to partially vacant land only in this land category.

As documented in Part IV of this Study, additional capacity was identified as a result of actions the City has taken to accommodate more homes inside the UGB:

Table 7. Additional Residential Land Supply from Efficiency Measures* and Pipeline Development, in gross acres, Eugene 2012-2032

<table>
<thead>
<tr>
<th>Plan Designation</th>
<th>Gross Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Density Residential</td>
<td></td>
</tr>
<tr>
<td>Permit fee reductions for secondary dwelling units</td>
<td>21</td>
</tr>
<tr>
<td>Lost capacity from interim protection measures</td>
<td>2</td>
</tr>
<tr>
<td>Medium Density Residential</td>
<td></td>
</tr>
<tr>
<td>R-2 zone code amendments</td>
<td>53</td>
</tr>
<tr>
<td>Affordable housing landbank program</td>
<td>5</td>
</tr>
<tr>
<td>High Density Residential</td>
<td></td>
</tr>
<tr>
<td>High density residential downtown</td>
<td>47</td>
</tr>
<tr>
<td>Post-2012 development/investment on High Density Residential land</td>
<td>15</td>
</tr>
<tr>
<td>Post-2012 development/investment on Commercial land</td>
<td>29</td>
</tr>
</tbody>
</table>

*Excludes land supply gained from re-designations. These gains are represented in Tables 1-3.

In summary, taken together, the vacant and partially vacant supply included in Figures 1 and 2 and Tables 1-3 with the capacity methods and density assumptions provided in Table 5 and 6, and the estimates for redevelopment and additional residential capacity provided in Tables 4 and 7, constitute Eugene’s 2012-2032 Residential Buildable Land Inventory (BLI).
Figure 1. Residential Land Supply (2012-2032)

- Urban Growth Boundary (2012)
- UGB Expansion Boundary
- Water Bodies
- Roads

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Caution: This map is not suitable for legal, engineering, or surveying purposes. This map in no way attempts to predict, determine, or require what happens on individual lots.
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 2 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 3 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Final
Figure 2. Residential Land Supply (2012-2032)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 5 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 6 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Caution: This map is not suitable for legal, engineering, or surveying purposes.
Data Sources: City of Eugene, RLID.
The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 10 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 11 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands

- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands

- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 12 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Sites re-designated to low density residential are noted.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Eugene Urban Growth Boundary
- UGB Expansion Boundary
- 2012 BLI Lots
- Major Streets
- Water Bodies
- Rail Road

0 0.25 0.5 Miles

0 0.25 0.5 Miles

Final
Figure 2. Residential Land Supply (2012-2032)

Map tile 13 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Final

Caution: This map is not suitable for legal, engineering, or surveying purposes.
Data Sources: City of Eugene, RLID.
The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 14 of 42

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Final Developed Residential Lands
- Committed or Protected Lands (in UGB)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Sites re-designated to low density residential are noted.
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.
Figure 2. Residential Land Supply (2012-2032)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 19 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Sites re-designated to low density residential are noted.
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Sites re-designated to low density residential are noted.

Figure 2. Residential Land Supply (2012-2032)
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 22 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Sites re-designated to low density residential are noted.
- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Sites re-designated to low density residential are noted.
Caution: This map is not suitable for legal, engineering, or surveying purposes.

- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 25 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 26 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands

- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands

- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 27 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 28 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Sites re-designated to low density residential are noted.
- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 30 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Sites re-designated to low density residential are noted.
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 35 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

Map tile 36 of 42

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

Developed Residential Lands
Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Plan Designations

Vacant Residential Lands
- Low Density Residential
- Medium Density Residential
- High Density Residential

Partially Vacant (PV) Residential Lands
- Low Density Residential (LDR)
- Medium Density Residential (MDR)
- High Density Residential (HDR)

- Developed Residential Lands
- Committed or Protected Lands (in UGB)

Sites re-designated to low density residential are noted.
Caution: This map is not suitable for legal, engineering, or surveying purposes.

Data Sources: City of Eugene, RLID.

The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.

For assumed capacity of land shown on the land supply, see Table 6 of Part V.

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.
- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Sites re-designated to low density residential are noted.
Figure 2. Residential Land Supply (2012-2032)

- Caution: This map is not suitable for legal, engineering, or surveying purposes.
- Data Sources: City of Eugene, RLID.
- The land supply was conducted at a sub-tax lot level analysis; tax lot boundaries are shown for reference only and may change over time.
- For assumed capacity of land shown on the land supply, see Table 6 of Part V.

Sites re-designated to low density residential are noted.